广元市主城区 暴雨强度公式编制报告

广元市气象局 二零一七年一月

目录

一、 ュ	二作内容	₹	1
二、敖	技术方法	<u> </u>	1
三、主	三要结论	<u> </u>	2
四、广	元市主	=城区暴雨强度公式说明及计算图表	3
技术报	3告		
1.文项	i与背景	意义	1

		线	
5.资料	与处理	方法	8
5.1	资料介	├绍	8
5.2	降水类	数据记录方法	8
5.3	降水資	资料的选样方法	8
5.4	降水类	数据的提取	9
	5.4.1	雨量自记纸数据提取	9
	5.4.2	自动气象站降水资料读取	12
	5.4.3	降水资料提取原则	12
	5.4.4	数据资料格式	13
6.暴雨	i强度公	式及研究方法	. 14
6.1	暴雨引	虽度公式介绍	14
	6.1.1		
	6.1.2	雨强单位的转换	
	6.1.3	暴雨强度的频率和重现期的计算公式	15
6.2	暴雨强	l度公式计算系统介绍	16
6.3	曲线找	l合及精度检验	16
	6.3.1	P-III分布频率分析	17
	6.3.2	指数分布频率分析	20
	6.3.3	耿贝尔分布频率分析	20
	6.3.4	曲线拟合的精度检验	21
6.4	暴雨强	度公式计算及误差控制	22
	6.4.1	暴雨强度公式参数估算方法	22
	6.4.2	误差分析	25
7. 广元	年最大	值法暴雨强度公式计算	. 26
7.1	样本资	科的理论频率分布曲线拟合	26
		是度公式计算结果及误差分析	

广元市主城区暴雨强度公式编制报告

	7.2.1	最小二乘法	30
	7.2.2	高斯牛顿法	33
7.3	年最大	大值法暴雨强度公式结论	35
8. 年起	表大值 》	去和南充暴雨强度公式对比	37
9. 结论	仑及建 议	义	39
9.1	结论		39
9.2	建议		40
	9.2.1	暴雨强度公式适用范围	40
	9.2.2	修订建议	40
参考)	文献		41

广元市主城区暴雨强度公式编制 ——工作报告

一、工作内容

- 1. 根据广元市国家基本气象站 1980-2014 年自记雨量记录资料, 建立准确可靠统计样本;
- 2. 根据《室外排水设计规范》(GB50014-2006, 2014版)推荐的皮尔逊-III型、耿贝尔和指数型分布函数对广元站各历时降水的概率分布进行拟合,对单一重现期暴雨强度公式、区间参数公式、暴雨强度总公式进行推求,按规定的方法进行误差分析、精度检验,挑选出精度最高的暴雨强度公式,并与广元现行使用的暴雨强度公式进行了对比分析。

二、技术方法

- 1. 依据《室外排水设计规范》(GB50014-2006, 2014 版)推荐使用的年最大值法建立暴雨强度公式编制所需的统计样本;
- 2. 根据《室外排水设计规范》(GB50014-2006, 2014版)推荐的皮尔逊-III型、耿贝尔和指数型分布函数对广元站各历时降水的概率分布进行拟合,对单一重现期暴雨强度公式、区间参数公式、暴雨强度总公式进行推求,按规定的方法进行误差分析、精度检验;
- 3. 根据《室外排水设计规范》(GB50014-2006, 2014 版)的暴雨强度公式编制方法,附录 A "暴雨强度公式的编制方法"进行计算及编制。暴雨强度也是根据规范提出的公式 $\mathbf{q} = \frac{\mathbf{167A1} \times (\mathbf{1+C lg P})}{(t+b)^{\mathbf{n}}}$ 进行计算,其中 \mathbf{q} 为暴雨强度($\mathbf{L}/(\mathbf{S}\cdot\mathbf{hm}^2)$), \mathbf{t} 为降雨历时(分钟), $\mathbf{A1}$ 、 \mathbf{b} 、 \mathbf{c} 、

n为需求的参数。

三、主要结论

- 1. 采用广元市国家基本气象站 1980-2014 年自记雨量记录资料,由气象部门已业务化运行的"降水自记纸彩色扫描数字化处理系统"对原始数据进行信息化处理,该系统通过计算机扫描、图像处理、数据处理,将气象站降水自记纸图像进行数字化转换,并需要经人工审核或修正后,录入数据库。数据精度高,能准确实现"不漏场次、不漏最大值"的挑选降雨场次的原则,统计样本准确可靠。
- 2. 根据 1980-2014 年广元主城区(暴雨强度资料,按《室外排水设计规范》(GB50014-2006, 2014版)推荐的皮尔逊-III型、耿贝尔和指数型分布函数对广元气象站各历时降水的概率分布进行拟合,对单一重现期暴雨强度公式、区间参数公式、暴雨强度总公式进行推求。并对计算结果进行比较分析。最终选择满足规范要求且误差最小的暴雨公式。具体如下:

暴雨强度总公式: $\mathbf{q} = \frac{1234.955 \times (1+0.633 \times \lg P)}{(t+7.493)^{0.608}}$ (单位: L/(S·hm²))

(平均绝对均方误差为 0.024mm/min, 相对均方误差为 2.63%)

其中: P——设计重现期 (a);

q--暴雨强度 (L/(S·hm²));

t--降雨历时 (min)。

四、广元市主城区暴雨强度公式说明及计算图表

2017年1月

广元市暴雨强度公式说明

- 1. 本项目计算图表根据广元市国家基本气象站 35 年(1980~2014年) 连续自记雨量记录编制。
- 2. 以重现期 1、2、3、5、10、20、50、100(年)相应的单一重现期暴雨强度公式制表。设计暴雨强度可按选定设计重现期直接查用表列数值(单一重现期暴雨强度公式见表 1)。
- 3. 若采用其它重现期,设计暴雨强度可用重现期区间参数公式(重现期区间暴雨强度公式见表 2) 计算:

$$q = \frac{167A}{(t+b)^n}$$

式中: q一设计暴雨强度(升/(秒·公顷))

t-降雨历时(分钟)

A一雨力

b、n-常数

(A、b、n 按重现期区间参数公式计算,公式见表二)

4. 暴雨强度总公式:

$$q = \frac{1234.955 \times (1 + 0.633 \times \lg P)}{(t + 7.493)^{0.608}}$$

(平均绝对均方误差为 0.024mm/min, 相对均方误差为 2.63%) 因总公式精度不及区间参数公式,故推求其它重现期设计暴雨强度时使用区间参数公式。 应用重现期区间参数公式计算暴雨强度实例: 求 P=5 年, t=50 分钟的暴雨强度 q。

从重现期区间参数公式 II, 得:

n=0.753-0.071Ln(P - 0.444)=0.645332 (取 0.645)

b=15.501-3.940Ln(P - 0.378)=9.46954 (取 9.470)

A=16. 285-2. 239Ln(P - 0.116)=12. 73403 (取 12. 734)

配得 P=5 年的暴雨强度计算公式如下:

$$q = \frac{(167 \times 12.734)}{(t+9.47)^{0.645}}$$

可按上式计算 $1\sim200$ 分钟中任何时段的暴雨强度。 当 t=50:

5.公式误差

应用暴雨强度区间公式算得的重现期 1~20 年暴雨强度的平均绝对均方误差和相对均方误差精度符合《室外排水设计规范》(GB50014-2006, 2014 版)提出的要求。

表 1 单一重现期暴雨强度分公式参数表

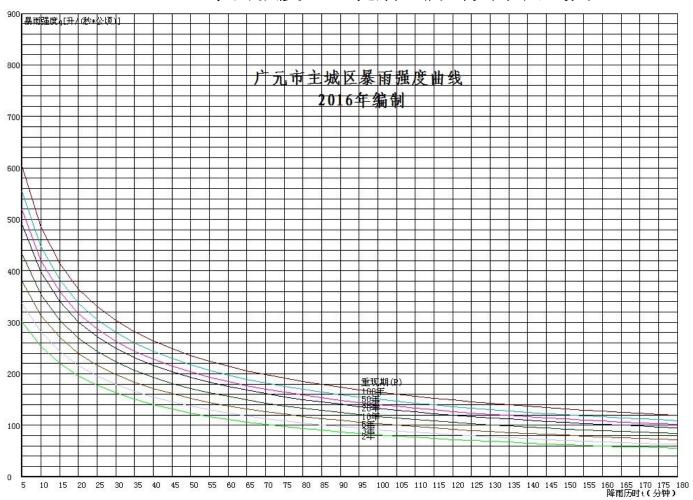
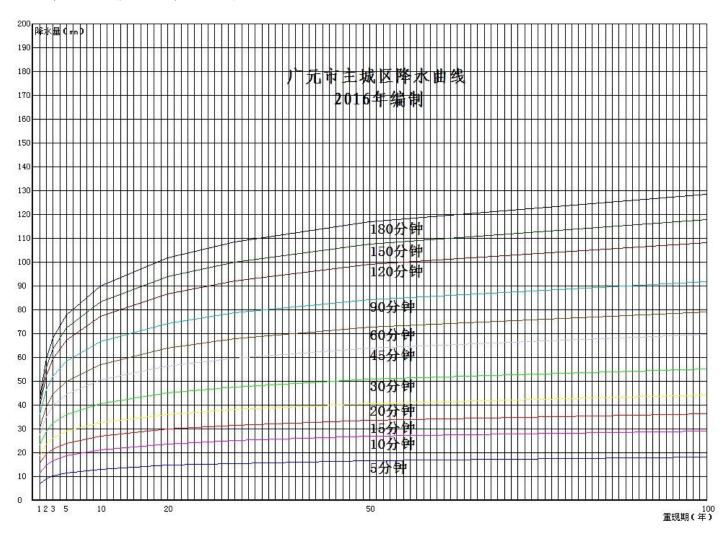

P(a)	$167 \mathrm{A} \left(\mathrm{L/s/hm^2} \right)$	A(mm/min)	b	n
1	2765. 687	16. 561	17. 372	0. 795
2	2482. 789	14. 867	13. 595	0.722
3	2323. 471	13. 913	11.703	0.686
5	2126. 578	12. 734	9.470	0.645
10	2056. 605	12. 315	7.774	0.612
20	2118. 228	12. 684	6. 794	0. 593
30	2154. 133	12.899	6. 401	0.585
40	2179. 517	13. 051	6. 151	0.579
50	2199. 223	13. 169	5. 968	0.575
60	2215. 422	13. 266	5.822	0.572
70	2228. 949	13. 347	5. 702	0.569
80	2240. 806	13. 418	5. 599	0.567
90	2251. 16	13. 48	5. 510	0.565
100	2260. 512	13. 536	5. 431	0. 563

表 2 任意重现期暴雨强度计算公式表


	• -		2 30 3 4 10 (4)2 1 3 1 4 10
重现期	区间	参数	公式
		n	0. 753-0. 071Ln (P - 0. 444)
1-10	II	b	15. 501-3. 940Ln (P - 0. 378)
		A	16. 285-2. 239Ln (P - 0. 116)
		n	0. 636-0. 016Ln (P - 5. 632)
10-100	III	b	8. 601-0. 699Ln (P - 6. 737)
		A	11. 105+0. 528Ln (P - 0. 107)

注: 区间Ⅱ的公式适用于重现期(P)在1—10年的计算 区间Ⅲ的公式适用于重现期(P)在10—100年的计算

6.暴雨强度一重现期一历时关系曲线图

7.不同历时的暴雨强度频率曲线

附录: 1.暴雨强度查算表

				广元	P=1 年	t	单位:分钟;	q 单位	: 升/(秒•公顷)				
t	q	t	q	t	q	t	q	t	q	t	q	t	q
1	273. 4	27	135. 629	53	93. 998	79	73. 209	105	60. 547	131	51.949	157	45. 691
2	262. 12	28	133. 247	54	92.95	80	72.61	106	60. 157	132	51.672	158	45. 484
3	251. 838	29	130. 957	55	91. 927	81	72. 023	107	59. 772	133	51. 399	159	45. 278
4	242. 424	30	128. 755	56	90. 93	82	71. 446	108	59. 393	134	51. 129	160	45. 075
5	233. 769	31	126. 634	57	89. 956	83	70.88	109	59. 019	135	50.862	161	44. 874
6	225. 782	32	124. 591	58	89. 006	84	70. 323	110	58. 65	136	50. 598	162	44. 675
7	218. 386	33	122. 62	59	88. 079	85	69. 776	111	58. 287	137	50. 337	163	44. 478
8	211. 515	34	120. 719	60	87. 172	86	69. 239	112	57. 928	138	50.08	164	44. 283
9	205. 114	35	118.883	61	86. 287	87	68.711	113	57. 575	139	49.825	165	44. 09
10	199. 134	36	117. 109	62	85. 422	88	68. 192	114	57. 226	140	49. 573	166	43.899
11	193. 533	37	115. 393	63	84. 576	89	67. 682	115	56. 882	141	49. 324	167	43. 709
12	188. 276	38	113. 733	64	83. 748	90	67. 181	116	56. 543	142	49.078	168	43. 522
13	183. 331	39	112. 126	65	82. 939	91	66. 687	117	56. 208	143	48.834	169	43. 336
14	178. 67	40	110. 57	66	82. 147	92	66. 202	118	55. 878	144	48. 594	170	43. 152
15	174. 268	41	109.061	67	81. 372	93	65. 725	119	55. 552	145	48. 356	171	42.97
16	170. 104	42	107. 598	68	80. 613	94	65. 255	120	55. 23	146	48. 12	172	42. 789
17	166. 158	43	106. 179	69	79. 871	95	64. 793	121	54. 912	147	47.887	173	42.611
18	162. 412	44	104. 801	70	79. 143	96	64. 338	122	54. 599	148	47. 657	174	42. 434
19	158. 852	45	103. 463	71	78. 43	97	63. 891	123	54. 289	149	47. 429	175	42. 258
20	155. 464	46	102. 163	72	77. 732	98	63. 45	124	53. 984	150	47. 204	176	42.084
21	152. 234	47	100.899	73	77. 047	99	63. 016	125	53. 682	151	46. 981	177	41. 912
22	149. 152	48	99. 67	74	76. 376	100	62. 589	126	53. 384	152	46. 76	178	41. 741
23	146. 207	49	98. 475	75	75. 718	101	62. 168	127	53. 09	153	46. 542	179	41. 572
24	143. 391	50	97.311	76	75. 072	102	61. 754	128	52. 8	154	46. 326	180	41. 405
25	140. 694	51	96. 178	77	74. 439	103	61. 346	129	52. 513	155	46. 112	181	41. 239
26	138. 109	52	95.074	78	73. 818	104	60. 944	130	52. 229	156	45. 9	182	41.074

				ナラ	元 P= 2年	t	单位:分钟;	q 单位	: 升/(秒•公顷))			
t	q	t	q	t	q	t	q	t	q	t	q	t	q
1	358. 414	27	171. 247	53	119. 788	79	94. 42	105	78. 97	131	68. 44	157	60. 738
2	341. 668	28	168. 264	54	118. 506	80	93. 69	106	78. 493	132	68. 1	158	60. 482
3	326. 675	29	165. 403	55	117. 256	81	92. 974	107	78. 023	133	67. 764	159	60. 229
4	313. 162	30	162. 655	56	116. 038	82	92. 271	108	77. 559	134	67. 433	160	59. 978
5	300. 909	31	160. 013	57	114. 848	83	91. 58	109	77. 101	135	67. 105	161	59. 73
6	289. 742	32	157. 471	58	113. 688	84	90. 902	110	76. 651	136	66. 781	162	59. 484
7	279. 514	33	155. 024	59	112. 555	85	90. 235	111	76. 206	137	66. 46	163	59. 241
8	270. 108	34	152. 665	60	111. 449	86	89. 58	112	75. 767	138	66. 143	164	59
9	261. 422	35	150. 391	61	110. 368	87	88. 936	113	75. 335	139	65. 83	165	58. 761
10	253. 375	36	148. 195	62	109. 312	88	88. 304	114	74. 908	140	65. 52	166	58. 525
11	245. 894	37	146. 074	63	108. 28	89	87. 681	115	74. 487	141	65. 214	167	58. 291
12	238. 92	38	144. 025	64	107. 27	90	87.069	116	74.071	142	64. 911	168	58. 059
13	232. 399	39	142. 042	65	106. 283	91	86. 468	117	73.662	143	64. 612	169	57. 829
14	226. 287	40	140. 124	66	105. 317	92	85. 876	118	73. 257	144	64. 315	170	57. 601
15	220. 546	41	138. 266	67	104. 372	93	85. 293	119	72.858	145	64. 022	171	57. 376
16	215. 14	42	136. 466	68	103. 447	94	84. 72	120	72. 463	146	63. 732	172	57. 152
17	210. 039	43	134. 721	69	102. 541	95	84. 156	121	72.074	147	63. 446	173	56. 931
18	205. 218	44	133. 028	70	101. 654	96	83.601	122	71.69	148	63. 162	174	56. 712
19	200. 653	45	131. 385	71	100. 785	97	83.054	123	71.311	149	62. 881	175	56. 495
20	196. 322	46	129. 789	72	99. 934	98	82. 516	124	70. 936	150	62. 603	176	56. 279
21	192. 208	47	128. 239	73	99. 099	99	81.987	125	70. 566	151	62. 329	177	56. 066
22	188. 294	48	126. 732	74	98. 281	100	81.465	126	70. 201	152	62. 057	178	55. 855
23	184. 565	49	125. 267	75	97. 479	101	80. 951	127	69. 84	153	61. 787	179	55. 645
24	181. 007	50	123. 842	76	96. 692	102	80. 445	128	69. 484	154	61. 521	180	55. 437
25	177. 609	51	122. 455	77	95. 92	103	79. 946	129	69. 132	155	61. 257	181	55. 231
26	174. 359	52	121. 104	78	95. 163	104	79. 455	130	68. 784	156	60. 996	182	55. 027

				ナ	元 P= 3年		t 单位:分钟;	q 单位:	升/(秒•公顷)				
t	q	t	q	t	q	t	q	t	q	t	q	t	q
1	406. 31	27	189. 21	53	132. 997	79	105. 489	105	88. 74	131	77. 303	157	68. 918
2	385. 728	28	185. 928	54	131. 605	80	104. 699	106	88. 222	132	76. 934	158	68. 639
3	367. 533	29	182. 782	55	130. 249	81	103. 923	107	87. 711	133	76. 568	159	68. 363
4	351. 312	30	179. 764	56	128. 926	82	103. 161	108	87. 208	134	76. 208	160	68. 089
5	336. 744	31	176. 865	57	127. 636	83	102. 412	109	86.712	135	75. 851	161	67.819
6	323. 577	32	174. 079	58	126. 377	84	101.677	110	86. 222	136	75. 498	162	67. 551
7	311.606	33	171. 398	59	125. 148	85	100. 954	111	85. 74	137	75. 149	163	67. 285
8	300. 669	34	168. 817	60	123. 948	86	100. 244	112	85. 264	138	74.805	164	67. 022
9	290. 629	35	166. 329	61	122. 776	87	99. 547	113	84. 794	139	74. 464	165	66. 762
10	281. 374	36	163. 929	62	121. 63	88	98. 861	114	84. 331	140	74. 127	166	66. 504
11	272. 812	37	161. 612	63	120. 511	89	98. 186	115	83. 874	141	73. 793	167	66. 248
12	264. 864	38	159. 374	64	119. 417	90	97. 523	116	83. 423	142	73. 464	168	65. 995
13	257. 461	39	157. 211	65	118. 347	91	96.87	117	82. 977	143	73. 138	169	65. 744
14	250. 547	40	155. 119	66	117.3	92	96. 229	118	82. 538	144	72.815	170	65. 496
15	244. 071	41	153. 094	67	116. 275	93	95. 597	119	82. 104	145	72. 496	171	65. 25
16	237. 993	42	151. 133	68	115. 272	94	94. 976	120	81. 676	146	72. 18	172	65.006
17	232. 273	43	149. 232	69	114. 291	95	94. 364	121	81. 253	147	71.868	173	64. 764
18	226. 88	44	147. 389	70	113. 329	96	93. 762	122	80.836	148	71. 559	174	64. 525
19	221. 785	45	145. 601	71	112. 387	97	93. 17	123	80. 424	149	71. 253	175	64. 288
20	216. 961	46	143. 865	72	111. 465	98	92. 586	124	80.017	150	70. 951	176	64.052
21	212. 388	47	142. 179	73	110. 56	99	92. 012	125	79. 615	151	70. 651	177	63.819
22	208. 045	48	140. 541	74	109. 674	100	91. 446	126	79. 218	152	70. 355	178	63. 588
23	203. 913	49	138. 949	75	108. 804	101	90.889	127	78.825	153	70.062	179	63. 36
24	199. 978	50	137. 4	76	107. 952	102	90.34	128	78. 438	154	69. 771	180	63. 133
25	196. 224	51	135. 893	77	107. 115	103	89. 798	129	78. 055	155	69. 484	181	62.908
26	192. 639	52	134. 426	78	106. 295	104	89. 265	130	77. 677	156	69. 199	182	62.685

				ŗ	元 P= 5年		t 单位: 分钟;	q 单位	: 升/(秒•公顷)				
t	q	t	q	t	q	t	q	t	q	t	q	t	q
1	467. 537	27	209. 042	53	147. 732	79	118. 031	105	99. 96	131	87. 597	157	78. 509
2	440. 822	28	205. 426	54	146. 226	80	117. 179	106	99. 401	132	87. 197	158	78. 206
3	417. 684	29	201. 966	55	144. 759	81	116. 342	107	98. 849	133	86.802	159	77. 907
4	397. 41	30	198. 65	56	143. 329	82	115. 52	108	98. 306	134	86.411	160	77. 61
5	379. 471	31	195. 47	57	141. 934	83	114. 713	109	97. 77	135	86.025	161	77. 316
6	363. 463	32	192. 417	58	140. 574	84	113. 919	110	97. 241	136	85.643	162	77. 025
7	349. 071	33	189. 482	59	139. 246	85	113. 14	111	96. 72	137	85. 266	163	76. 736
8	336. 049	34	186. 659	60	137. 95	86	112. 374	112	96. 205	138	84.892	164	76. 451
9	324. 198	35	183. 941	61	136. 684	87	111.622	113	95. 698	139	84. 523	165	76. 168
10	313. 358	36	181. 321	62	135. 448	88	110. 882	114	95. 197	140	84. 158	166	75. 888
11	303. 396	37	178. 795	63	134. 239	89	110. 154	115	94. 703	141	83. 797	167	75. 61
12	294. 205	38	176. 356	64	133. 058	90	109. 438	116	94. 216	142	83. 439	168	75. 335
13	285. 692	39	174. 001	65	131. 903	91	108. 735	117	93. 734	143	83.086	169	75.062
14	277. 78	40	171.724	66	130. 773	92	108. 042	118	93. 26	144	82.736	170	74. 792
15	270. 404	41	169. 522	67	129. 667	93	107. 361	119	92. 791	145	82. 39	171	74. 525
16	263. 507	42	167. 39	68	128. 585	94	106. 691	120	92. 328	146	82.048	172	74. 26
17	257. 043	43	165. 325	69	127. 526	95	106. 031	121	91.871	147	81.71	173	73. 997
18	250. 967	44	163. 324	70	126. 488	96	105. 381	122	91. 419	148	81.375	174	73. 736
19	245. 246	45	161. 384	71	125. 472	97	104. 742	123	90. 974	149	81.043	175	73. 478
20	239. 845	46	159. 501	72	124. 477	98	104. 112	124	90. 533	150	80.715	176	73. 223
21	234. 738	47	157. 674	73	123. 501	99	103. 492	125	90. 099	151	80. 39	177	72. 969
22	229. 899	48	155. 898	74	122. 545	100	102. 881	126	89. 669	152	80.069	178	72. 718
23	225. 307	49	154. 173	75	121. 607	101	102. 28	127	89. 245	153	79. 75	179	72. 469
24	220. 942	50	152. 496	76	120. 687	102	101. 687	128	88. 825	154	79. 435	180	72. 222
25	216. 786	51	150. 865	77	119. 785	103	101. 103	129	88. 411	155	79. 123	181	71. 977
26	212. 824	52	149. 277	78	118. 9	104	100. 527	130	88. 002	156	78. 815	182	71. 734

	广元 P= 10 年 t 单位:分钟; q 单位:升/(秒·公顷)												
t	q	t	q	t	q	t	q	t	q	t	q	t	q
1	544. 395	27	234. 371	53	166. 539	79	133. 923	105	114. 077	131	100. 475	157	90. 451
2	509. 597	28	230. 339	54	164. 884	80	132. 988	106	113. 463	132	100. 035	158	90. 117
3	480. 105	29	226. 485	55	163. 271	81	132. 069	107	112. 857	133	99. 599	159	89. 786
4	454. 721	30	222. 797	56	161. 7	82	131. 166	108	112. 259	134	99. 169	160	89. 458
5	432. 592	31	219. 262	57	160. 167	83	130. 28	109	111. 67	135	98. 743	161	89. 133
6	413. 091	32	215. 872	58	158. 673	84	129. 41	110	111. 088	136	98. 322	162	88. 812
7	395. 747	33	212. 616	59	157. 214	85	128. 554	111	110. 515	137	97. 906	163	88. 493
8	380. 199	34	209. 487	60	155. 79	86	127. 713	112	109. 949	138	97. 494	164	88. 177
9	366. 162	35	206. 476	61	154. 4	87	126. 887	113	109. 391	139	97. 087	165	87. 865
10	353. 413	36	203. 576	62	153. 042	88	126. 075	114	108. 841	140	96. 685	166	87. 555
11	341.77	37	200. 781	63	151. 715	89	125. 276	115	108. 297	141	96. 286	167	87. 248
12	331. 086	38	198. 085	64	150. 418	90	124. 49	116	107. 761	142	95. 892	168	86. 944
13	321. 239	39	195. 483	65	149. 149	91	123. 717	117	107. 232	143	95. 503	169	86. 642
14	312. 128	40	192. 968	66	147. 909	92	122. 957	118	106. 709	144	95. 117	170	86. 344
15	303. 667	41	190. 537	67	146. 695	93	122. 209	119	106. 193	145	94. 735	171	86. 048
16	295. 785	42	188. 185	68	145. 507	94	121. 472	120	105. 684	146	94. 358	172	85. 755
17	288. 42	43	185. 908	69	144. 344	95	120. 748	121	105. 181	147	93. 984	173	85. 464
18	281. 519	44	183. 702	70	143. 206	96	120. 034	122	104. 684	148	93. 615	174	85. 176
19	275. 037	45	181. 564	71	142. 09	97	119. 332	123	104. 193	149	93. 249	175	84. 891
20	268. 933	46	179. 49	72	140. 998	98	118. 64	124	103. 709	150	92. 887	176	84. 608
21	263. 174	47	177. 478	73	139. 927	99	117. 959	125	103. 23	151	92. 528	177	84. 327
22	257. 729	48	175. 523	74	138. 877	100	117. 288	126	102. 757	152	92. 173	178	84. 049
23	252. 57	49	173. 625	75	137. 848	101	116. 627	127	102. 29	153	91.822	179	83. 773
24	247. 675	50	171. 779	76	136. 838	102	115. 975	128	101.828	154	91. 474	180	83. 5
25	243. 023	51	169. 985	77	135. 848	103	115. 333	129	101. 372	155	91. 13	181	83. 229
26	238. 593	52	168. 238	78	134. 877	104	114. 701	130	100. 921	156	90. 789	182	82. 96

	广元 P= 20 年 t 单位:分钟; q 单位:升/(秒·公顷)												
t	q	t	q	t	q	t	q	t	q	t	q	t	q
1	626. 843	27	262. 646	53	187. 247	79	151. 159	105	129. 199	131	114. 132	157	103. 013
2	583. 539	28	258. 143	54	185. 414	80	150. 123	106	128. 519	132	113. 644	158	102. 642
3	547. 436	29	253. 842	55	183. 629	81	149. 107	107	127. 848	133	113. 161	159	102. 275
4	516. 768	30	249. 728	56	181. 889	82	148. 109	108	127. 186	134	112. 684	160	101. 911
5	490. 318	31	245. 788	57	180. 193	83	147. 129	109	126. 534	135	112. 212	161	101. 55
6	467. 216	32	242. 011	58	178. 539	84	146. 165	110	125. 89	136	111. 745	162	101. 193
7	446. 824	33	238. 386	59	176. 925	85	145. 219	111	125. 255	137	111. 284	163	100. 839
8	428. 659	34	234. 903	60	175. 349	86	144. 289	112	124. 629	138	110. 828	164	100. 489
9	412. 351	35	231. 554	61	173. 811	87	143. 375	113	124. 011	139	110. 376	165	100. 141
10	397. 609	36	228. 33	62	172. 308	88	142. 476	114	123. 401	140	109. 93	166	99. 797
11	384. 203	37	225. 224	63	170.84	89	141. 592	115	122. 799	141	109. 488	167	99. 456
12	371. 945	38	222. 228	64	169. 404	90	140. 723	116	122. 205	142	109. 051	168	99. 118
13	360. 685	39	219. 338	65	168. 001	91	139. 868	117	121. 619	143	108. 619	169	98. 784
14	350. 296	40	216. 546	66	166. 629	92	139. 026	118	121. 04	144	108. 191	170	98. 452
15	340. 674	41	213. 848	67	165. 286	93	138. 199	119	120. 469	145	107. 768	171	98. 123
16	331. 73	42	211. 238	68	163. 972	94	137. 384	120	119. 904	146	107. 349	172	97. 797
17	323. 391	43	208. 712	69	162. 686	95	136. 582	121	119. 347	147	106. 934	173	97. 474
18	315. 591	44	206. 265	70	161. 426	96	135. 793	122	118. 797	148	106. 524	174	97. 154
19	308. 278	45	203. 894	71	160. 192	97	135. 015	123	118. 253	149	106. 118	175	96.837
20	301. 402	46	201. 595	72	158. 984	98	134. 25	124	117. 716	150	105. 716	176	96. 523
21	294. 924	47	199. 364	73	157. 799	99	133. 496	125	117. 186	151	105. 319	177	96. 211
22	288. 806	48	197. 199	74	156. 638	100	132. 753	126	116. 662	152	104. 925	178	95. 902
23	283. 018	49	195. 095	75	155. 499	101	132. 021	127	116. 144	153	104. 535	179	95. 595
24	277. 532	50	193. 051	76	154. 383	102	131. 3	128	115. 632	154	104. 149	180	95. 292
25	272. 322	51	191. 063	77	153. 288	103	130. 59	129	115. 126	155	103. 767	181	94. 99
26	267. 366	52	189. 129	78	152. 213	104	129. 89	130	114. 626	156	103. 388	182	94. 692

	广元 P= 50年 t 单位:分钟; q 单位:升/(秒·公顷)												
t	q	t	q	t	q	t	q	t	q	t	q	t	q
1	720. 248	27	294.69	53	210. 943	79	170. 981	105	146. 649	131	129. 931	157	117. 574
2	666. 797	28	289. 67	54	208. 913	80	169. 834	106	145. 895	132	129. 389	158	117. 161
3	622. 973	29	284. 878	55	206. 936	81	168. 709	107	145. 151	133	128. 853	159	116. 752
4	586. 232	30	280. 296	56	205. 009	82	167. 603	108	144. 417	134	128. 322	160	116. 347
5	554. 876	31	275. 911	57	203. 131	83	166. 517	109	143. 694	135	127. 798	161	115. 946
6	527. 724	32	271. 709	58	201. 299	84	165. 451	110	142. 98	136	127. 28	162	115. 548
7	503. 927	33	267. 678	59	199. 511	85	164. 402	111	142. 276	137	126. 767	163	115. 155
8	482. 855	34	263. 806	60	197. 766	86	163. 372	112	141. 581	138	126. 26	164	114. 765
9	464. 034	35	260. 084	61	196. 063	87	162. 359	113	140. 895	139	125. 759	165	114. 378
10	447. 095	36	256. 502	62	194. 399	88	161. 364	114	140. 219	140	125. 263	166	113. 995
11	431. 749	37	253. 053	63	192. 773	89	160. 384	115	139. 551	141	124. 772	167	113. 616
12	417. 765	38	249. 727	64	191. 184	90	159. 421	116	138. 892	142	124. 286	168	113. 24
13	404. 955	39	246. 519	65	189. 631	91	158. 474	117	138. 242	143	123. 806	169	112. 867
14	393. 167	40	243. 421	66	188. 111	92	157. 542	118	137. 599	144	123. 33	170	112. 498
15	382. 273	41	240. 427	67	186. 624	93	156. 625	119	136. 965	145	122. 86	171	112. 132
16	372. 169	42	237. 532	68	185. 169	94	155. 722	120	136. 339	146	122. 394	172	111. 769
17	362. 763	43	234. 731	69	183. 745	95	154. 833	121	135. 72	147	121. 934	173	111. 41
18	353. 982	44	232. 018	70	182. 35	96	153. 958	122	135. 11	148	121. 478	174	111. 053
19	345. 759	45	229. 389	71	180. 984	97	153. 097	123	134. 506	149	121. 026	175	110. 7
20	338. 039	46	226. 841	72	179. 646	98	152. 248	124	133. 91	150	120. 58	176	110. 35
21	330. 774	47	224. 368	73	178. 334	99	151. 412	125	133. 321	151	120. 137	177	110.003
22	323. 921	48	221. 968	74	177. 049	100	150. 589	126	132. 739	152	119. 699	178	109. 659
23	317. 443	49	219. 637	75	175. 788	101	149. 778	127	132. 164	153	119. 266	179	109. 317
24	311. 309	50	217. 372	76	174. 552	102	148. 979	128	131. 596	154	118. 837	180	108. 979
25	305. 488	51	215. 17	77	173. 339	103	148. 191	129	131. 035	155	118. 412	181	108. 643
26	299. 956	52	213. 028	78	172. 149	104	147. 415	130	130. 48	156	117. 991	182	108. 311

	广元 P= 100年 t 单位:分钟; q 单位:升/(秒·公顷)												
t	q	t	q	t	q	t	q	t	q	t	q	t	q
1	792. 768	27	318. 813	53	228. 869	79	186. 031	105	159. 936	131	141. 988	157	128. 706
2	730. 815	28	313. 408	54	226. 693	80	184. 802	106	159. 126	132	141. 405	158	128. 262
3	680. 67	29	308. 251	55	224. 573	81	183. 595	107	158. 328	133	140. 829	159	127. 823
4	639. 044	30	303. 322	56	222. 507	82	182. 41	108	157. 541	134	140. 26	160	127. 387
5	603. 795	31	298. 606	57	220. 494	83	181. 246	109	156. 764	135	139. 696	161	126. 956
6	573. 463	32	294. 088	58	218. 53	84	180. 102	110	155. 998	136	139. 139	162	126. 528
7	547. 016	33	289. 755	59	216. 614	85	178. 978	111	155. 242	137	138. 589	163	126. 105
8	523. 699	34	285. 595	60	214. 744	86	177. 873	112	154. 497	138	138. 044	164	125. 685
9	502. 948	35	281. 596	61	212. 918	87	176. 787	113	153. 761	139	137. 505	165	125. 269
10	484. 33	36	277. 749	62	211. 134	88	175. 72	114	153. 035	140	136. 972	166	124. 857
11	467. 507	37	274. 045	63	209. 392	89	174. 67	115	152. 318	141	136. 444	167	124. 449
12	452. 212	38	270. 474	64	207. 688	90	173. 637	116	151.61	142	135. 922	168	124. 045
13	438. 231	39	267. 03	65	206. 023	91	172.621	117	150. 912	143	135. 406	169	123. 644
14	425. 387	40	263. 704	66	204. 394	92	171.621	118	150. 222	144	134. 895	170	123. 247
15	413. 536	41	260. 492	67	202. 801	93	170. 637	119	149. 542	145	134. 39	171	122. 853
16	402. 559	42	257. 385	68	201. 241	94	169. 669	120	148. 869	146	133. 889	172	122. 463
17	392. 355	43	254. 38	69	199. 714	95	168. 716	121	148. 205	147	133. 394	173	122. 076
18	382. 838	44	251. 469	70	198. 219	96	167. 777	122	147. 549	148	132. 904	174	121. 692
19	373. 935	45	248. 65	71	196. 755	97	166. 853	123	146. 901	149	132. 419	175	121. 312
20	365. 584	46	245. 916	72	195. 32	98	165. 943	124	146. 261	150	131. 938	176	120. 935
21	357. 731	47	243. 264	73	193. 914	99	165. 046	125	145. 629	151	131. 463	177	120. 561
22	350. 33	48	240. 691	74	192. 536	100	164. 163	126	145. 004	152	130. 992	178	120. 191
23	343. 338	49	238. 191	75	191. 185	101	163. 293	127	144. 387	153	130. 526	179	119. 824
24	336. 721	50	235. 762	76	189. 859	102	162. 435	128	143. 776	154	130. 064	180	119. 459
25	330. 445	51	233. 401	77	188. 559	103	161. 59	129	143. 173	155	129. 607	181	119. 098
26	324. 485	52	231. 104	78	187. 283	104	160. 757	130	142. 577	156	129. 155	182	118. 74

广元市主城区暴雨强度公式编制 ——技术报告

1. 立项与背景意义

近年以来,我市极端暴雨天气事件频发,1998年"9.16"暴雨、2010年"7.22-25"暴雨、2013年"7.16-18"暴雨等等,给我市带来了巨大的人员伤亡和经济损失,严重影响着城市的正常运作和人民的生产生活。如2010年7月22日至25日,我市出现持续性大暴雨天气过程,广元城区累计雨量达377.5毫米,致使山洪暴发,河水陡涨,广元城区、旺苍嘉川、剑阁老县城等地受灾。由于这次暴雨强度大、范围广、持续时间长,导致溪河水陡涨,农作物、农房、乡村道路及基础设施受灾损毁较为严重,一些城镇街道因排水不畅,短时积水达15厘米至30厘米,最深1米,造成居民和营业门市商品财物损失。

极端暴雨天气引发了滑坡、泥石流、城市内涝等多种次生灾害,其中,对城市来说,内涝已成为影响最为突出的灾害之一。如 2012年北京"7.21"暴雨造成了 70 多人失去生命,震惊了中国乃至全世界。而广元主城区城市内涝情况也不容乐观,如 2016年 7.24-25短时强降水,平日平静的南河也因上游连降大雨致使河水不断上涨,部分地方河水倒灌,形成内涝,城区下穿隧道和局部低洼地段积水50-100 厘米,造成部分路段交通阻塞,给人民群众生活带来了极大的不便。究其原因,一是集水区下垫面高度硬化使汇流加大,二是一些排水设施遭到损坏,三是排水系统设计标准偏低、暴雨强度变得更强。如何破解迷局,是各级政府应该重视的问题。

2013年3月,国务院办公厅《关于做好城市排水防涝设施建设工作的通知》(国办发[2013]23号)指出,要求通过综合措施、用十年时间逐步解决城市渍涝危害问题,并明确了主要任务和时间节点,包括充分掌握过去十年的城市暴雨渍涝灾害、地下管网资料、重新修订暴雨强度公式、及时制订雨污分流规划并最终实现雨污分流,使大中小城市在分别出现50、30、20年一遇暴雨的情况下,不得有重大人员伤亡。为了落实该项文件要求,住建部和中国气象局联合发文(建城[2014]66号),要求各地住房城乡建设、气象部门要建立相应合作机制,加快开展暴雨强度公式制(修)订工作。

所谓暴雨强度公式,是能反映一定频率的暴雨在规定时段最不利时程分配的平均强度的计算公式,它对优化城市排水渠道和地下管网规划、预防大面积渍涝灾害有非常重要的作用。因此合理编制暴雨强度公式是提高城市防洪排涝能力和防灾减灾的现实需要。

《城市暴雨强度公式编制和设计暴雨雨型确定技术导则》中规定,编制一个城市的暴雨强度公式,至少应选择一个代表性站点,城市地形地貌及降雨特征差异较大,并具备基础资料条件的城市,宜选择多个代表性站点编制当地不同区域的暴雨强度公式,以分别代表城市的不同区域特征。短历时暴雨雨型资料站点宜与暴雨强度公式站点一致,同时,应选择当地国家气象站或区域站作为代表性站点。广元市从未编制过暴雨强度公式,以前均采用的周边南充等地的暴雨强度公式。随着广元市城市发展,主城区框架逐步扩大,中心城区是未来100万人口规划发展的核心区,由于降雨强度大,且地势多低洼地带,为了配合制订的城市规划项目,建设和谐美丽的新城区,利用最新降水资料研制暴雨强度公式的工作格外迫切。

按照广元市市委、市政府要求,广元市气象局承担了广元主城区暴雨强度公式的编制任务,广元市业务科技科为具体承办单位。项目组在较短时间内组织大量技术力量,先后开展了降水资料收集及数字化处理、公式推算、公式检验和误差分析、对比分析,完成了各项研究分析任务,在此基础上编制了本报告。

2. 编制依据

本项目按照下列规范、文件要求进行编制:

- (1)《室外排水设计规范》(GB50014-2006)(2011年版)
- (2)《室外排水设计规范》(GB50014-2006)(2014年版)
- (3)《城市排水工程设计-暴雨强度公式编制技术指南》(中国气象局,2013年5月)
- (4)住房城乡建设部中国气象局《城市暴雨强度公式编制和设计暴雨雨型确定技术导则》(2014年4月)
 - (5)《地面气象观测规范》(气象出版社,2003年11月版)
- (6)《地面气候资料 30 年整编常规项目及其统计方法》 (QX/T22-2004)
 - (7)《气象资料统计规定》(气象出版社,1984年7月出版)
- (8) 国务院办公厅《关于做好城市排水防涝设施建设工作的通知》(国办发[2013]23号)
- (9)中国气象局预报司《关于加强城市排水气候可行性论证工作的通知》(便函,2012年9月7日)
- (10)住房城乡建设部《城市排水(雨水)防涝综合规划编制大纲》(2013年7月12日)
- (11)住房城乡建设部中国气象局关于联合开展城市内涝预报预警与防治工作的合作框架协议(2013年8月12日)
 - (12)《给排水设计手册(第5册)城市排水》(2003版)

3. 广元市气候特征分析

广元市位于四川北部边缘,山地向盆地过渡地带,摩天岭、米仓山东西向横亘市北,分别为川甘、川陕界山; 市南则由剑门山、大栏山等川北弧形山脉覆盖。境内地势由北向东南倾斜,地形十分复杂,地貌多样,地势起伏大,在龙门、米仓山前缘与盆北弧形山交接地带,形成了一条狭长的山前凹槽。称为"米仓走廊"。范围东起旺苍普济、西至下寺镇,东西长 137.6 公里,南北宽 5 公里,其中堆积地形较为发达,呈现河谷平坝之景观。广元市境内河流以嘉陵江为主干,有白龙江、清水河、东河、木门河等 75 条河流,水量丰富,流速急、落差大。

广元市属于亚热带湿润季风气候。广元地处秦岭南麓,是南北的过渡带,即有南方的湿润气候特征,又有北方天高云淡、艳阳高照的特点。南部低山,冬冷夏热;北部中山区冬寒夏凉,秋季降温迅速。但自然灾害,特别是旱、涝灾害频繁。地处"秦巴山地灾害区"、"四川盆地东部大暴雨、山洪、滑坡区"等地带,形成了以旱涝为核心的自然灾害链,其中暴雨的危害最为严重。广元的暴雨分布极不均匀,主要集中在汛期(5-9月),广元主城区多年平均降水量为928.9mm,年平均暴雨次数在3.5天左右。表3.1为广元主城区的降水气候特征值。

1× 0. 1	儿工城区件水(医竹准值(新	洲 30 千 【医贝尔丁			
	项目	广元主城区			
	年均降水量/mm	928. 9			
年降水量	年最大降水量/mm	1587. 2			
	出现年份	1981			
日阪山里	月最大降水量/mm	627. 3			
月降水量	出现月份	2010. 07			
口阪山里	日最大降水量/mm	220. 5			
日降水量	出现日期	2010. 07. 23			

表 3.1 广元主城区降水气候特征值(新编 30 年气候资料)

从 11 个降水历时最大降水年际变化来看,60min 历时以下最大短时降水强度基本无变化,而大于60min 历时略有上升,以 20min、60min 和 180min 历时为例,20min 降水强度变化趋势较小,60 min 降水和 180min 降水强度略有增长。

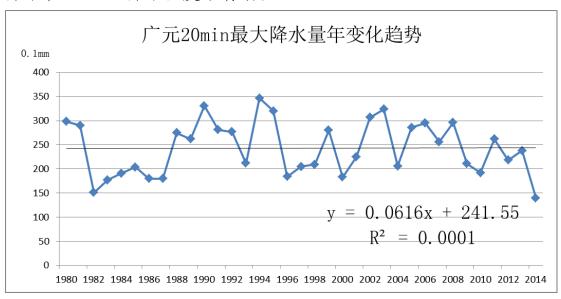


图 3.1 20min 降水量

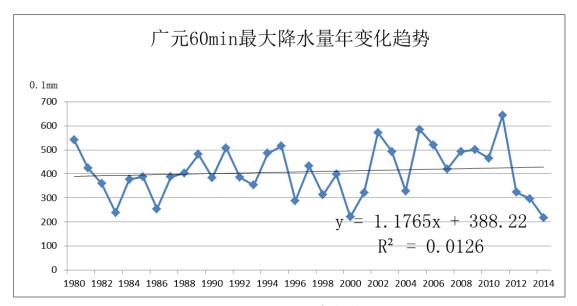


图 3.2 60min 降水量

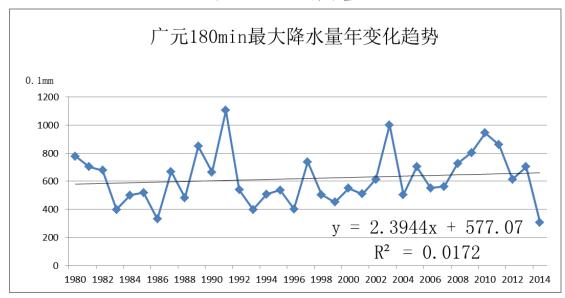


图 3.3 180min 降水量

4. 项目技术路线

本项目研究的目的是得出广元市暴雨强度公式,项目技术路线是(见图 4.1):

- (1) 原始资料的收集。包括文献查阅以及数据源的收集;
- (2)降水资料整理与样本数据采集。在降水资料整理中采用"降水自记纸彩色扫描数字化处理系统"将自记纸雨量数字化并进行整理;在样本数据采集上应用年最大值法和年多个样法进行选样;
- (3) 频率分布曲线拟合及精度检验。采用 P-III型分布、指数分布和耿贝尔分布三种频率分布模型;
 - (4)公式参数计算。采用最小二乘法和高斯牛顿法进行计算;
- (5)误差分析。对不同方法求得的公式进行误差分析,舍去不符合规范的公式,从而得到精度最高、误差最小的公式。
- (6)对比分析。对年最大值法取样下计算得到的最优结果与广元现用公式进行比较。

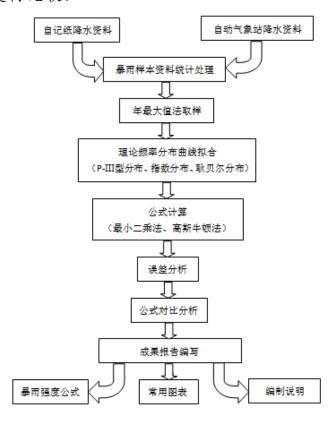


图 4.1 广元市暴雨强度公式编制技术流程图

5. 资料与处理方法

5.1 台站概况

广元市主城区只有1个国家级气象观测站,为广元(105°51′E,32°26′N,海拔513.8米)。该站为国家基本气象站,建于1941年9月5日,该站气象观测资料完整,年代较长。常规观测项目有气压、绝对湿度、相对湿度、风速和风向、气温、降水量、日照、蒸发量等,仪器设备和资料整理等均符合国家规范。

5.2 资料介绍

本项目所用到的降水资料如下 (表 5.1):

表 5.1 降水资料使用清单 降水资料 1980.1.1-2003.12.31 雨量自记纸资料

广元 (57206)

站名

2004. 1. 1-2014. 12. 31 自动气象站分钟雨量数据

5.3 降水数据记录方法

广元站为国家基本气象观测站,其降水量的数据记录有两种方式:

- (1) 遥测雨量计观测资料,即以自记纸形式保存的历史降水记录资料;
- (2)翻斗式雨量计观测资料,即现代自动气象站自动记录的逐分钟降水量资料。

5.4 降水资料的选样方法

暴雨资料的选样方法有年最大值法、年多个样法、年超大值法和

年超定量法等。本项目采用了国家标准《室外排水设计规范》 (GB50014-2006, 2014 年版)推荐使用的是年最大值法进行计算。

年最大值法: 从逐年分钟雨量资料中每年挑选 5、10、15、20、30、45、60、90、120、150、180 分钟共 11 个降雨历时的最大值作为原始数据,合计 385 个样本。

5.5 降水数据的提取

5.5.1 雨量自记纸数据提取

(1) 人工读取

传统的降水资料主要是纸质的雨量自记纸资料(图 5.1),自记纸上直观地记录着降雨的过程曲线,从曲线上可以读出降雨的起止时间、雨量大小、降雨强度。采用人工读数的方法,从气象站每年的雨量自记纸记录中分别读取 5、10、15、20、30、45、60、90、120、150、180 分钟这 11 个降雨历时的前 8 个最大降水量数据。

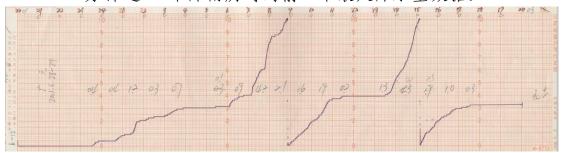


图 5.1 广元国家基本气象站雨量自记纸

(2) 雨量自记纸资料信息化处理

对以自记纸形式保存的国家气象站历史降水资料,使用中国气象局组织编制的"降水自记纸彩色扫描数字化处理系统"进行数字化处理。该系统通过计算机扫描、图像处理、数据处理,将气象站降水自记纸图像进行数字化转换,成为逐分钟降水量,并需要经人工审核或修正后,录入数据库。

具体处理过程如下:

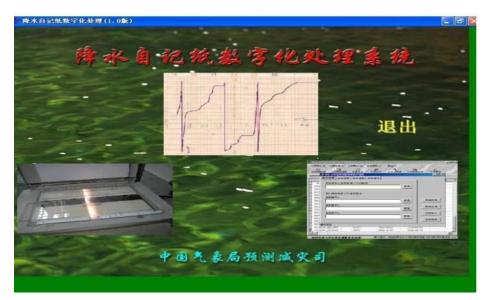


图 5.2 "降水自记纸数字化处理系统"界面

(A) 降水自记纸预处理

在自记纸扫描前,需将装订好的自记纸拆开,挑选出有降水过程的自记纸,并标注起止日期,使时间清晰地写在可扫描区域内。

(B)图像扫描

首先设置好扫描图像的分辨率、图像压缩率等扫描参数,一般文件大小应控制在 150—350KB 之间,如过大可提高压缩率、过小则减小压缩率,以达到正常跟踪与处理速度、保存容量的较好结合,又有较快的扫描速度。

(C) 降水自记迹线的跟踪

降水自记迹线的跟踪主要有:调整合适的阈值,使程序能更好的自动跟踪;在强降水时,采用强降水跟踪方法(在非强降水时也可灵活使用该方法);作异常处理时,可采用二次处理法,首先由程序自动计算异常量,然后再将包含异常时段在内的若干小时作异常处理,输入这段时间的降水量;无降水时的处理方法是从最早出现降水的地方开始跟踪,将尾部无降水的迹线删除;注意与状态库或地面气象观测记录月报表文件中的日降水量及逐时降水量进行比对。

(D) 数据转换与质量检查

数据转换包括:将迹线数据(ZJR文件)转换成分钟强度数据, 将分钟强度数据进行质量检查后再转换成标准分钟强度数据,以及将 标准分钟强度数据转换成小时强度数据。在分钟强度转换前,可运行 软件对 ZJR 文件进行质量检查,检查项目包括时间连续性检查和数据 质量检查。数据转换程序也会进行转换前的必要检查,如虹吸过程是 否超过 2 分钟,虹吸量是否超范围等。

(E) 数据集制作

降水自记纸数字化处理应得到 3 个数据集:图像数据集、降水强度数据集和迹线文件数据集。每个数据集应包括:数据实体文件、数据说明文件、备注说明文件和元数据说明文件 4 个部分,因此,每个数据集应按规范和格式要求制作说明文档、备注说明文件和元数据说明文档。

雨量自记纸经"降水自记纸彩色扫描数字化处理系统"处理成分钟数据后,利用"暴雨强度公式资料处理系统"(如下图 5.3),从自记纸分钟雨量数据中分别滑动提取 5、10、15、20、30、45、60、90、120、150、180 分钟这 11 个历时的降水量数据,并按照年最大值法的数据格式要求生成数据文本。

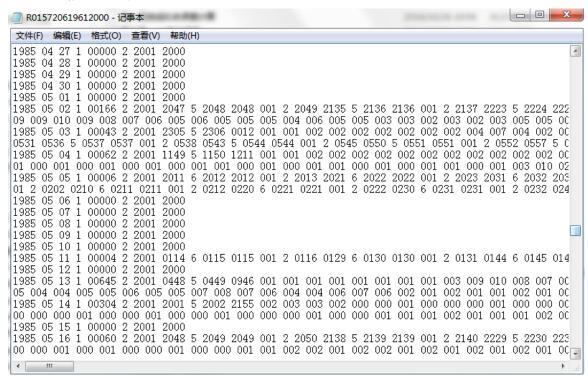


图 5.3 经系统处理成分钟数据后的格式

5.5.2 自动气象站降水资料读取

(1) 资料质量控制

采用现代自动气象站自动记录的逐分钟降水量资料作为编制暴雨公式的基础资料时,需要对原始数据进行质量检查、审核。

(2) 一致性分析

选择有代表性的各种强度降雨过程资料,对自动气象站自动记录 的逐分钟降水资料与同期的降水自记纸资料进行一致性分析,产生不 一致时,宜采用数值较大的资料序列。

广元站在 2003 年由广元市中区东坝乡(郊外)搬迁到广元市利州区东坝鞍子沟(山顶),搬迁距离小于 0.8 千米,周边环境和气候特征基本一致,不影响数据的连续性,所以广元站 1980-2014 年降水资料是连续可用的。

(3)数据提取

利用"暴雨强度公式资料处理系统",从气象站自动站雨量分钟记录中分别滑动提取 5、10、15、20、30、45、60、90、120、150、180 分钟这 11 个历时每年的降水量数据。

5.5.3 降水资料提取原则

降水气象资料的统计和分析计算根据中国气象局颁发的《地面气象观测规范》和《全国地面气候资料统计方法》进行,按照"不漏场次、不漏大值"的原则选取降雨过程,降水数据提取原则如下:

- (A) 当 2 小时内无降水或者降水量 ≤ 0.1mm 时,可以视为两个独立的降水过程进行数据挑选;
- (B)在同一个降水过程内,对每一个降水历时仅能选取该降水过程内最大的这个降水量数据作为样本;
- (C) 各时段最大降水量从年内各月降水量自记纸或每分钟降水量数据滑动挑取,且不受日、月界的限制(但不跨年挑取);

- (D) 各时段年最大降水量出现两次或以上相同时, 开始时间栏记出现次数;
- (E) 雨量大而降雨历时不足时,要将降雨历时按零雨量外延至降雨历时。

5.5.4 数据资料格式

年最大值法数据格式如图 5.4 所示,每一年的数据为 1 行 12 列,第一列为年份,2 至 12 列为一年中 5、10、15、20、30、45、60、90、120、150、180 分钟这 11 个降雨历时的最大降雨量。

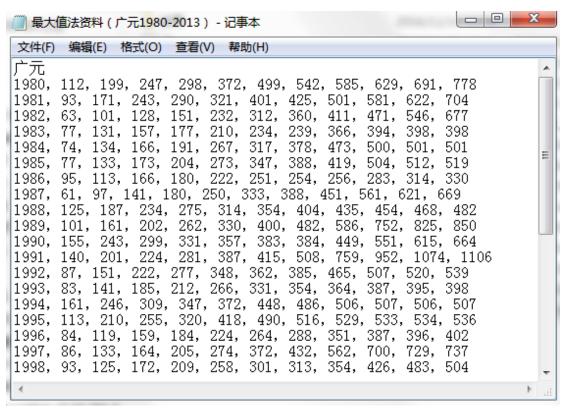


图 5.4 最大值法年数据格式

6. 暴雨强度公式及研究方法

本节主要介绍了暴雨强度公式计算系统、暴雨强度样本的曲线拟合及其精度检验、暴雨强度公式参数计算方法及其误差分析等。

6.1 暴雨强度公式介绍

6.1.1 公式的定义及参数介绍

依据《室外排水设计规范》(GB50014-2006, 2011 版),暴雨强度公式的定义为:

$$i = \frac{A_1 \times (1 + C \times \lg P)}{(t+b)^n} \tag{6-0}$$

式(6-1)中: i 为降水强度(单位: mm/min), P 为重现期(单位: a); t 为降雨历时(单位: min), 取值范围为 1-180min。重现期越长、历时越短,暴雨强度就越大,而 A₁、b、C、n 是与地方暴雨特性有关且需求解的参数: A₁为雨力参数,即重现期为 1a 时的 1min 设计降雨量(单位: mm); C 为雨力变动参数; b 为降雨历时修正参数,即对暴雨强度公式两边求对数后能使曲线化成直线所加的一个时间参数(单位: min); n 为暴雨衰减指数,与重现期有关。

6.1.2 雨强单位的转换

室外排水设计采用的雨水参数是以体积(容量)来表达,需将以毫米(mm)为单位的降水强度,转换为以升(L)为单位的降水体积(容量)。单位时间(min)单位面积(hm²)1mm降水量转换为容量(L)时,经过以下换算过程:

1 mm = 0.001 m:

 $1 \text{hm}^2 = 10000 \text{m}^2$:

 $1m^3 = 1000L$:

 $1 \text{hm}^2 \times 0.001 \text{m} = 10 \text{m}^3 = 10000 \text{L};$

即单位时间 (min) 单位面积 (hm^2) 的 1mm 降水换算成容量为 10000L,单位时间为 1s 时,单位面积为 $1hm^2$ 的降水容量为 $10000/60=166.66[L/(S·hm^2)]$,则雨强 $q[L/(S·hm^2)]$ 与雨强 i (mm/min)之间可以 $q \approx 167i$ 进行换算。

因此,暴雨强度公式(6-0)也可写成:

$$q = \frac{167A_1 \times (1 + C \times \lg P)}{(t+b)^n}$$

6.1.3 暴雨强度的频率和重现期的计算公式

在暴雨强度频率的计算中,常用经验频率公式:

次频率: $P_m = \frac{M}{k \times N + 1} \times 100\%$

年频率: $P_i = \frac{M}{N+1} \times 100\%$

式中: Pm——次频率;

Pi——年频率;

N---资料年限;

K——每年平均取样个数;

M——样本由大到小排列的序位, M=1, 2, ..., N。

暴雨强度重现期 P 是指相等或超过它的暴雨强度出现一次的平均时间,单位用年。

对于年多个样法, 其重现期 T_N:

$$T_N = \frac{k \times N + \mathbf{1}}{k \times M}$$

对于年最大值法, 其重现期 T_M:

$$T_M = \frac{N+\mathbf{1}}{M}$$

6.2 暴雨强度公式计算系统介绍

暴雨强度公式计算系统按功能分为暴雨数据采集、暴雨数据选样、频率曲线拟合及误差分析、暴雨公式参数估计与误差分析、结果输出等 5 大模块和计算步骤。本项目利用"暴雨强度计算系统"实现暴雨强度公式编制的大部分计算工作,该系统已通过中国气象局、住建部联合组织的技术验收,可直接进行暴雨强度公式拟合、结果输出和精度检验等。

图 6.1 暴雨强度公式计算系统

6.3 曲线拟合及精度检验

根据国家标准《室外排水设计规范》(GB50014-2006)(2011版), 年多个样法的重现期采用 0.25、0.33、0.5、1、2、3、5、10、20、50、100a 这 11 个时限; 而根据住房城乡建设部-中国气象局《城市暴雨强度公式编制和设计暴雨雨型确定技术导则》(2014年4月)所规定,年最大值法的重现期则采用 2、3、5、10、20、30、50、100a 这 8 个时限。由于设计采用的重现期(100年一遇)大于资料年限,故采用理论频率分布曲线进行拟合调整,暴雨强度公式统计中,常用的理论频率曲线有 P-III型分布曲线、指数分布曲线、耿贝尔分布曲线、经验频率曲线等,选用何种分布曲线关键是看分布曲线对原始数据的 拟合程度,误差越小、精度越高的分布越具有代表性,拟合精度以绝对均方根误差和相对均方根误差作为判断标准。经验频率曲线由于精度不高,实际工作中一般较少采用,所以广元暴雨强度公式编制采用P-III型分布曲线、指数分布曲线和耿贝尔分布曲线。

6.3.1 P-Ⅲ分布频率分析

(1) 函数表达式

P-III型分布的概率密度函数为:

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} (x - b)^{\alpha - 1} e^{-\beta(x - b)} (b \le x < \infty)$$

式中, $\Gamma(\alpha)$ 为伽马函数

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx \; ; \quad \alpha, \beta > 0$$

三个原始参数 α 、 β 、 b 经适当换算,可以用 3 个统计参数 x , C_{v} , C_{s} 表示:

$$\alpha = \frac{4}{C_{s}^{2}} \tag{6-1}$$

$$\beta = \frac{2}{\bar{x}C_{v}C_{s}} \tag{6-2}$$

$$b = \overline{x} \left(1 - \frac{2C_v}{C_s} \right) \tag{6-3}$$

式中, Cv为离差系数; Cs为偏差系数; **X**为均值。这3个统计参数可以通过矩法进行初步确定。使用矩法计算3个统计参数公式如下:

$$\bar{x} = 1/n \sum x_i \tag{6-4}$$

$$C_{v} = \sqrt{\frac{\sum (k_{i} - 1)^{2}}{n - 1}}$$

$$C_{s} = \frac{\sum (k_{i} - 1)^{3}}{(n - 3)C_{...}^{3}}$$
(6-6)

将这些待定参数用统计参数表示代入 P-III型曲线的方程式中,则方程式可以写成:

$$y = f(\bar{x}, C_v, C_s, x)$$

P-III型概率密度函数就确定了,给一个 x 值,可以计算一个 y 值,从而可以绘出概率密度曲线。在频率分析计算中,需要绘制理论频率曲线,也就是要根据指定的频率求相应的特征值 x_p ,它可以通过下列积分求得:

$$P(x \ge x_p) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{x_p}^{\infty} (x - b)^{\alpha - 1} e^{-\beta(x - b)} dx$$
(6-7)

随机变量标准化的形式为:

$$\Phi = \frac{x - x}{\bar{x} C_V}$$

$$P = \frac{2^{\alpha} C_s^{1-2\alpha}}{\Gamma(\alpha)} \int_{\Phi}^{\infty} (C_s \Phi + 2)^{\alpha - 1} e^{-\frac{2(C_s \Phi + 2)}{C_s^2}} d\Phi$$
 (6-8)

式中的被积函数只含有一个待定参数 Cs, 因为其它两个参数 x 和 Cv 都包含在 Φ 中。可见,其相应计算的关键在于解决 Φ 值的大小。

(2) Φ值计算的常规方法

式(6-8)中的被积函数只含有一个待定参数 Cs,因为其它两个参数 \overline{x} 和 Cv 都包含在 Φ 中。因而只要假定一个 Cs 值,便可从式(6-7)通过积分求出 P与 Φ 之间的关系,假定不同的 Cs,得出相应的 $P-\Phi$ 关系,可以制成 P-III 型曲线离均系数 Φ 值表。在频率计算时,先由已知的 Cs 查 Φ 值表得出不同频率 P 的离均系数 Φ D 值,然后将 Φ D 及已

知的 \overline{x} 、Cv 代入下式,即可求出对应于频率 P 的特征值 x_p 即相应雨强的大小。

$$x_p = (\Phi_p C_v + 1)\overline{x}$$
$$K_p = \Phi_p C_v + 1$$

由不同的 P 值及相应的 x_p , 便可绘制出一条与 x, Cv, Cs 相应的理论频率曲线。

(3) Φ值的简易求解方法

将
$$\alpha = \frac{4}{C_s^2}$$
代入式 (6-8), 得到:

$$P = \alpha^{\alpha/2} / \Gamma(\alpha) \cdot \int_{\Phi_{\alpha}}^{\infty} \left(\Phi + \sqrt{\alpha} \right)^{\alpha - 1} e^{-\sqrt{\alpha} \left(\Phi + \sqrt{\alpha} \right)} d\Phi \qquad (6-9)$$

 $\phi N = \sqrt{\alpha} (\Phi + \sqrt{\alpha}),$ 则由式 (6-9) 可以推得下式:

$$P = 1/\Gamma(\alpha) \cdot \int_{N_P}^{\infty} N^{\alpha - 1} e^{-N} dN$$
 (6-10)

$$\Gamma(\alpha) \cdot \Gamma(\alpha, N) = \int_{0}^{N_{P}} N^{\alpha - 1} e^{-N} dN = \Gamma(\alpha) - M$$

可得 $M = \Gamma(\alpha) \cdot [1 - \Gamma(\alpha, N)]$, 代入式 (6-10) 得:

$$P = 1/\Gamma(\alpha) \cdot \Gamma(\alpha) \left[1 - \Gamma(\alpha, \sqrt{\alpha} \left(\Phi_p + \sqrt{\alpha} \right) \right) \right]$$
$$= 1 - \Gamma(\alpha, \sqrt{\alpha} \left(\Phi_p + \sqrt{\alpha} \right) \right)$$

即

$$\Gamma\left(\alpha,\sqrt{\alpha}\left(\Phi_p+\sqrt{\alpha}\right)\right)=1-P$$

则得:

$$\Gamma(4/C_s^2, 2/C_s \cdot \left(\Phi_p + 2/C_s\right)) = -\Gamma(\alpha, N) \qquad (6-11)$$

(其中 $\alpha > 0$, N>0) 称为不完全伽马函数,其代数解法可参考《C常用算法程序集》。由于 $\Gamma(\alpha, N)$ 在 N $\in (0-\infty)$ 时,单调递增,故当 α , $\Gamma(\alpha, N)$ 的值已确定时可以采用二分法求出 N。频率分析时,式(6-11)中,Cs、P均为已知值,在这种情况下,即可求出 N,即 2/Cs·(Φ P+2/Cs)的值,从而即可反推出 Φ 值。

6.3.2 指数分布频率分析

指数分布的密度函数为:

$$f(x) = ae^{-\alpha(x-a_0)} (a_0 \le x < +\infty)$$
 (6-12)

式中: a、 a_0 为分布参数,a表示离散程度,a>0; a_0 为分布的下限。指数分布的概率分布函数为:

$$F(x) = \int_{a_0}^{x} f(x)dx = 1 - e^{-\alpha(x - a_0)}$$

$$P = \frac{1}{f} = \frac{1}{1 - F(x)} = e^{\alpha(x - a_0)}$$

则重现期:

对上式两边取对数得到:

上式用最小二乘法可求得系数 a 及 a0:

$$\begin{cases} a = \frac{n\sum (i_{P} \ln P) - \sum i_{P} \sum \ln P}{(\sum \ln P)^{2} - n\sum (\ln P)^{2}} \\ a_{0} = \frac{\sum i_{P} - a\sum \ln P}{n} \end{cases}$$
 (6-13)

6.3.3 耿贝尔分布频率分析

耿贝尔曲线是根据极值定理导出的,频率分布形态为偏态铃形分布,降雨强度与重现期在其频率格纸中呈一直线。当有 n 年年最大值

就有 n 个最大项 x,组成一个分布,因最大项是极值,因此其分布又称为极值分布。耿贝尔应用第 I 型极值分布来分析其频率。

其基本函数形式为:

$$P(x) = \exp\left(e^{-(\alpha+x)/c}\right) \tag{6-14}$$

耿贝尔累积频率函数及密度函数如下:

$$Q_1(x) = P(\xi \ge x) = 1 - \exp[-e^{-\alpha(x-u)}], \quad \alpha > 0, -\infty < u < \infty$$
 (6-15)

$$q_1(x) = \alpha \exp\left[-\alpha(x-u) - e^{-\alpha(x-u)}\right]$$
, $-\infty < x < \infty$ (6-16)

其参数与数字特征关系如下:

$$\alpha = \frac{1.2825}{\sigma}$$
, $u = E(\xi) - 0.45005\sigma$

将变量标准化,对于任意给定的频率 p,由 $p=Q_1(xp)$ 求解得:

$$x_p = u - \frac{1}{\alpha} \ln[-\ln(1-p)]$$
 (6-17)

将 α 及 u 的表达式代入上式即可解得 x_p 的标准化变量:

$$\Phi_{p} = \frac{x_{p} - E(\xi)}{\sigma} = \left\{ 0.45005 + 0.7797 \ln\left[-\ln\left(1 - p\right)\right] \right\} \quad (6-18)$$

耿贝尔分布频率曲线实际上是 P-III曲线的一个特例,其 C_s 固定为 1.140,所以只有均值、 C_v 两个参数,计算简便。

6.3.4 曲线拟合的精度检验

为确保曲线拟合的精度,需要对各分布曲线拟合结果进行精度检验,计算曲线理论拟合值和和曲线对应的实际值的平均绝对均方误差和平均相对均方误差,看其精度是否符合要求。

平均绝对均方根误差:
$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(\frac{R'_i - R_i}{t_i} \right)^2}$$

平均相对均方根误差:
$$f = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\frac{R'_i - R_i}{R_i})^2} \times 100\%$$

式中,R'为同一频率对应的实际值,R为拟合值(理论曲线估计值),t 为降水历时,n 为样本数。

根据《室外排水设计规范》(GB50014-2006, 2014版)要求,采用年最大值法计算抽样误差和暴雨公式误差,重现期在 2~20a 时,宜按绝对均方根误差计算,也可以辅以相对均方根误差计算,在一般降雨强度的地方平均绝对均方根误差不宜大于 0.05 (mm/min),在较大降雨强度的地方平均相对均方根误差不宜大于 5%。

选择满足精度要求的曲线线型,根据该线型确定的频率分布曲线,可以得出降水强度、重现期、降水历时三者的关系,即 i-P-t 三联表。i-P-t 三联表中的数据将作为暴雨强度公式参数估算的原始资料。

6.4 暴雨强度公式计算及误差控制

6.4.1 暴雨强度公式参数估算方法

从(6-0)式可以看出,暴雨强度公式为已知关系式的超定非线性方程,公式中有 A₁、b、C、n 这 4 个参数,显然常规方法无法求解,因此参数估计方法的设计和减少估算误差尤为关键。这里我们运用最小二乘法、高斯牛顿法两种方法进行参数估算。

6.4.1.1 最小二乘法

(1) 单一重现期公式拟合

由暴雨强度公式:

$$q = \frac{167 A_1 (1 + C \lg P)}{(t+b)^n}$$

令 $A=167A_{l}(1+ClgP)$,则得到一个简化的表达式,即为单一重现

期公式:

$$q = \frac{A}{(t+b)^n} \tag{6-19}$$

式中 A 为雨力参数,即不同重现期下 1min 的设计降水量 (mm)。 对式 (6-19)两边取对数,并令:

$$y = \ln q$$
, $b_0 = \ln A$, $b_1 = -n$, $x = \ln(t+b)$

则公式可简化为一个一元线性方程形式:

$$y = b_0 + b_1 x (6-20)$$

采用最小二乘法,可求出式(6-20)中的 b_0 和 b_1 ,则可求出A、 n_o

由于式 (6-19) 中的 b 也是未知数,在此,推荐采用"数值逼近法"来处理: 先给定一个 b 值,采用最小二乘法进行计算,得出相应的 A、n 值,同时求出其均方根误差 σ ,不断调整 b 值,直至使其 σ 值达到最小时,从而得到最为合理的 A、b、n 值。同理,以此方法,可将 11 个降雨历时的单一重现期暴雨强度公式逐个推算出来。

(2) 总公式拟合

对暴雨强度公式两端求对数:

$$\ln q = \ln 167 A_1 + \ln (1 + C \lg P) - n \ln(t + b)$$

设 $y = \ln q - \ln(1 + C \lg P)$, $b_0 = \ln 167 A_1$, $b_1 = -n$, $x = \ln(t + b)$, 则上式可写为:

$$y = b_0 + b_1 x$$

以最小二乘法求出 b_1 和 b_2 ,从而可求出 A_1 、n以及q'(拟合值),同时求出总公式的均方根误差 $\overline{\sigma}$:

$$\overline{\sigma} = \frac{1}{m_0} \sum_{j=1}^{m_0} \left(\sqrt{\frac{1}{m} \sum_{i=1}^{m} \left(q_{ij} - a_{ij}' \right)^2} \right)$$

 $m \to 11$ 个历时, $m \to 11$ 个重现期。 取使 σ 最小的一组参数 A_1 、b、n,即为最佳拟合参数。

6.4.1.2 高斯牛顿法

张子贤^[7] 给出了高斯牛顿法求解暴雨强度公式参数的具体步骤, 使非线性模型线性化。

暴雨强度公式: $q = \frac{167A_{\text{I}}(1 + C \lg P)}{(t+b)^n}$, 式中两个自变量: 重现期 P,

历时 t; 四个待定参数 A_1 , C, b, n。应用高斯牛顿法, 对这四个参数非线性寻优, 其方法步骤如下:

(1) 由暴雨强度公式对 A_i , C, b, n 分别求偏导数:

$$\frac{\partial q}{\partial A_1} = \frac{167(1+C\lg P)}{(t+b)^n} \tag{6-21}$$

$$\frac{\partial q}{\partial C} = \frac{167A_1 \lg P}{(t+b)^n} \tag{6-22}$$

$$\frac{\partial q}{\partial b} = \frac{-[167A_1(1+C\lg P)]N}{(t+b)^{n+1}}$$
 (6-23)

$$\frac{\partial q}{\partial N} = \frac{-\left[167A_1(1+C\lg P)\ln(t+b)\right]}{(t+b)^n} \tag{6-24}$$

- (2) 确定参数迭代初值 $\theta_{(0)} = (A_{I(0)}, C_{(0)}, b_{(0)}, n_{(0)})'$
- (3) 应用式(6-21)—(6-24), $\theta_{(0)}$ 以及m组实测值 $(T_i, t_i; i_i)$, $i = 1 \sim m$, 可计算偏导数矩阵 $J(\theta_{(0)})$ 以及 $f(\theta_{(0)})$ 。

$$J(\theta_{(k)}) = \begin{bmatrix} \frac{\partial f_1(\theta)}{\partial \theta_1} & \frac{\partial f_1(\theta)}{\partial \theta_2} & \cdots & \frac{\partial f_1(\theta)}{\partial \theta_p} \\ \frac{\partial f_2(\theta)}{\partial \theta_1} & \frac{\partial f_2(\theta)}{\partial \theta_2} & \cdots & \frac{\partial f_2(\theta)}{\partial \theta_p} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_m(\theta)}{\partial \theta_1} & \frac{\partial f_m(\theta)}{\partial \theta_2} & \cdots & \frac{\partial f_m(\theta)}{\partial \theta_p} \end{bmatrix}_{\theta^{\sim}\theta_{(k)}}$$

$$f(\theta_{(k)}) = [f_1(\theta_{(k)}), f_2(\theta_{(k)}), \dots, f_m(\theta_{(k)})]$$

(4) 根据 $\theta_{(k+1)} = \theta_{(k)} + [J'(\theta_{(k)})J\theta_{(k)}]^{-1}J'(\theta_{(k)})[y - f(\theta_{(k)})]$ 可求得 $\theta_{(1)}$ 。

(5) 再以 $\theta_{(1)}$ 作为初始值,重复步骤(3)、(4),根据给定 δ 值(例如 δ =0.0005),经若干次递推迭代,可求得暴雨公式参数 θ 的估计值。

6.4.2 误差分析

为确保参数估算结果的准确性,要对暴雨强度计算结果进行误差分析,将计算得到的暴雨强度理论值和实测值的绝对均方根误差和相对均方根误差,与室外排水设计规范(GB50014-2006)(2011和2014版)规定的精度对照。

平均绝对均方根误差:
$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\frac{R'_i - R_i}{t_i})^2}$$
 平均相对均方根误差: $f = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\frac{R'_i - R_i}{R_i})^2} \times 100\%$

式中,R'为 i-t-P 三联表对应的降水强度 i 值,R 为暴雨强度公式计算出来的雨强,t 为降水历时,n 为样本数。

7. 广元年最大值法暴雨强度公式计算

7.1 样本资料的理论频率分布曲线拟合

通过暴雨强度公式计算系统,选用 P-III分布、指数分布和耿贝尔分布曲线对采用最大值法选样的广元主城区 1980-2014 年降水样本资料进行频率调整,见图 7.1-7.3。

图 7.1 P-III分布参数

图 7.2 指数分布参数

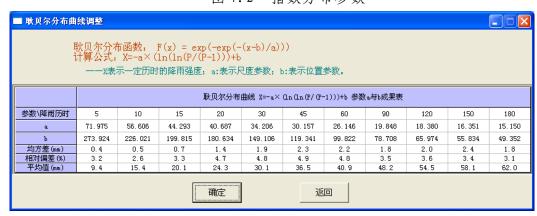


图 7.3 耿贝尔分布参数

		,	1 - 1 - 1		E 11.74	77 4 1	1 1 1 7 7	-, -, 4 4,, 1	P 70-2	-			
	t(min)	5	10	15	20	30	45	60	90	120	150	180	平均
P-III分布	$\sigma \; (mm/min)$	0.08	0.04	0.04	0.06	0.04	0.03	0.02	0.02	0.02	0.02	0.01	0.04
P-111分和	f (%)	3. 10	2.20	2.40	3.70	4. 10	2.30	2.50	2.70	3.30	3. 20	3. 10	2.96
指数分布	$\sigma \; (mm/min)$	0.10	0.10	0.09	0.11	0.10	0.07	0.06	0.04	0.03	0.03	0.02	0.07
1日 数 刀 巾	f (%)	4.80	5.80	5. 70	7. 70	8. 10	9. 30	9. 10	6. 90	6.80	6. 40	5. 90	6. 95
및 및 실 / 소	$\sigma \; (\text{mm/min})$	0.08	0.04	0.04	0.07	0.06	0.04	0.04	0.02	0.02	0.02	0.01	0.04
耿贝尔分布	f (%)	3. 20	2.60	3.30	4.70	4.80	4. 90	4.80	3.50	3.60	3. 40	3. 10	3.81

表 7.1 年最大值法各降水历时样本的曲线拟合误差

从表 7.1 可以看出, 三种分布曲线拟合结果中, P-III分布最理想, 耿贝尔分布次之, 指数分布拟合结果较差。 P-III型分布中,除 5min、20 min 绝对均方差分别为 0.08mm/min、0.06mm/min,其他历时的绝对均方差和所有历时的相对均方差均满足误差要求, 其平均绝对均方差和平均相对均方差分别为 0.04mm/min 和 2.96%; 耿贝尔分布中,除 5min、20 min、30 min 绝对均方差分别为 0.08mm/min、0.07 mm/min、0.06 mm/min,其他历时的绝对均方差和所有历时的相对均方差均满足误差要求, 其平均绝对均方差和平均相对均方差分别为 0.04mm/min和 3.81%; 指数分布 5-60min 降水历时中,绝对均方差均大于0.05mm/min,相对均方差多数都超过 5%,最大值达 9.30%,两项指标平均值也不满足误差要求,建议指数分布不作为计算暴雨强度公式参数的理论频率曲线,因此本报告后面也将不再对指数分布进行对比计算分析。

根据曲线调整的参数可以画出不同历时的降水量随重现期的变化曲线(见图 7.5、7.6),得出降水强度、重现期、降水历时三者的关系,即 i-P-t 三联表(见表 7.2—7.5),从两分布曲线的三联表可以看出耿贝尔分布降水强度要大于 P-III分布。

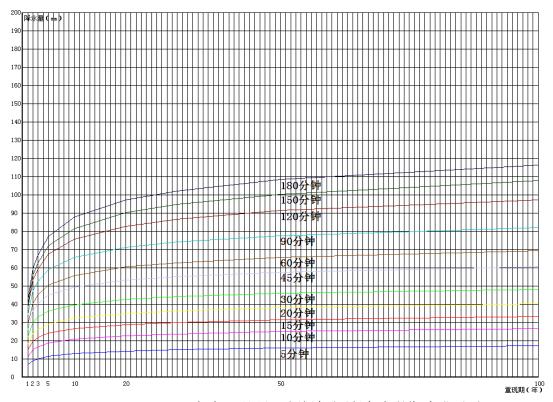


图 7.5 P-III分布-不同历时的降水量随重现期变化曲线

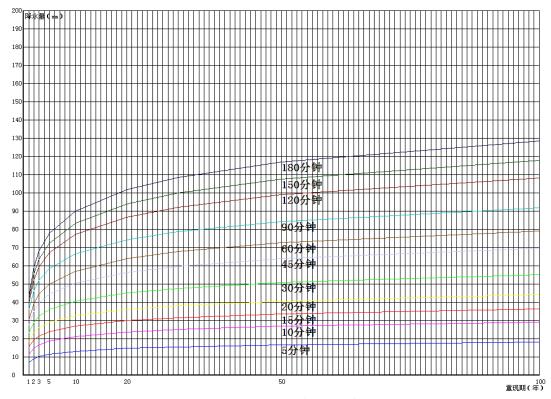


图 7.6 耿贝尔-不同历时的降水量随重现期的变化曲线

表 7.2 P-III分布-降水强度 i-P-t 表((mm/min)	表	-t	i-P-	度	く强	- 降.	布.	I分	P-I	2	7	表
-----------------------------	----------	---	----	------	---	----	------	----	----	-----	---	---	---

P∖t	5	10	15	20	30	45	60	90	120	150	180
1	1. 37	1.12	1.01	0.91	0.74	0. 58	0.49	0.38	0.32	0.27	0.24
2	1.79	1.50	1.31	1. 19	1.00	0.81	0.68	0.53	0.44	0.37	0.33
3	1.98	1.65	1.44	1. 30	1. 10	0.89	0.75	0.58	0.49	0.42	0.37
5	2. 26	1.86	1.60	1.46	1. 21	1.00	0.84	0.66	0.56	0.48	0.43
10	2.56	2.08	1.77	1.61	1. 32	1. 10	0. 93	0.73	0.63	0.54	0.49
20	2.84	2. 27	1.92	1.74	1. 42	1. 18	1.01	0.79	0.69	0.60	0.54
30	2.99	2.37	2.00	1.82	1.47	1. 23	1.04	0.82	0.72	0.63	0.57
50	3. 18	2.49	2. 10	1. 91	1. 53	1. 28	1.09	0.86	0.76	0.67	0.60
100	3. 42	2.65	2. 22	2.02	1.60	1. 34	1. 15	0.91	0.81	0.72	0.65

表 7.3 P-III分布-降水强度 q-P-t 表 (L/(S·hm²))

P∖t	5	10	15	20	30	45	60	90	120	150	180
1	228. 79	187. 04	168. 67	151. 97	123. 58	96. 86	81. 83	63.46	53. 44	45. 09	40.08
2	298. 93	250. 5	218.77	198.73	167	135. 27	113. 56	88.51	73.48	61.79	55. 11
3	330.66	275. 55	240. 48	217. 1	183. 7	148. 63	125. 25	96.86	81.83	70.14	61.79
5	377. 42	310.62	267. 2	243.82	202. 07	167	140. 28	110. 22	93. 52	80.16	71.81
10	427. 52	347. 36	295. 59	268.87	220. 44	183. 7	155. 31	121. 91	105. 21	90.18	81.83
20	474. 28	379.09	320.64	290. 58	237. 14	197. 06	168. 67	131. 93	115. 23	100. 2	90.18
30	499. 33	395. 79	334	303. 94	245. 49	205. 41	173. 68	136. 94	120. 24	105. 21	95. 19
50	531.06	415.83	350.7	318.97	255. 51	213. 76	182. 03	143. 62	126. 92	111.89	100. 2
100	571.14	442.55	370. 74	337. 34	267. 2	223. 78	192. 05	151. 97	135. 27	120. 24	108. 55

表 7.4 耿贝尔分布-降水强度 i-P-t 表 (mm/min)

P∖t	5	10	15	20	30	45	60	90	120	150	180
1	1. 39	1. 16	1. 04	0. 94	0.77	0. 61	0. 51	0.40	0. 33	0. 28	0. 24
2	1.80	1.48	1. 29	1. 17	0. 97	0. 78	0.66	0. 51	0.44	0.37	0. 33
3	2.03	1.66	1.44	1. 30	1.08	0.88	0.74	0. 58	0.49	0.42	0.38
5	2. 29	1.86	1. 59	1. 45	1. 20	0. 99	0.83	0.65	0. 56	0.48	0. 43
10	2.61	2. 12	1.79	1.63	1.35	1. 12	0.95	0.74	0.64	0. 55	0.50
20	2. 92	2. 36	1. 98	1.81	1.50	1. 25	1.06	0.82	0.72	0.63	0. 56
30	3. 10	2.50	2.09	1. 91	1. 59	1. 33	1. 13	0.87	0.77	0.67	0.60
50	3. 32	2.68	2. 23	2. 03	1.69	1.42	1. 21	0. 94	0.82	0.72	0.65
100	3. 62	2. 91	2. 42	2. 20	1.84	1.55	1. 32	1.02	0.90	0.78	0.71

P∖t	5	10	15	20	30	45	60	90	120	150	180
1	231.96	193.00	173. 98	156. 90	129. 16	101.75	84. 57	67. 13	55. 25	46.30	40. 52
2	300. 30	246. 78	216.05	195. 55	161.64	130.39	109.40	85. 98	72.71	61.83	54. 90
3	338. 91	277. 12	239. 80	217. 36	179. 99	146. 56	123. 42	96.62	82. 57	70.59	63.03
5	381. 90	310. 92	266. 25	241.67	200.41	164. 57	139. 04	108.48	93. 54	80.36	72.08
10	435. 90	353. 41	299. 49	272. 19	226.08	187. 21	158.66	123. 37	107. 34	92.63	83.45
20	487.71	394. 15	331.37	301.49	250.71	208. 91	177. 48	137.66	120. 57	104. 40	94. 35
30	517. 50	417.60	349.72	318. 33	264.87	221.40	188. 31	145.88	128. 18	111. 17	100.62
50	554.77	446.89	372.64	339. 39	282. 58	237. 01	201.84	156. 15	137.69	119.63	108.47
100	605. 01	486. 42	403. 57	367. 80	306. 46	258.07	220. 10	170. 01	150. 52	131.05	119. 04

表 7.5 耿贝尔分布-降水强度 q-P-t 表 (L/(S·hm²))

7.2 暴雨强度公式计算结果及误差分析

在用理论频率分布曲线对降水样本进行曲线拟合得到 i-P-t 三 联表数据后,我们分别用最小二乘法、高斯牛顿法计算暴雨强度总分 公式各参数及相应的公式误差。

7.2.1 最小二乘法

利用皮尔逊分布和耿贝尔分布曲线得到的 i-P-t 三联表数据,分别用最小二乘法计算暴雨强度总、分公式各参数,并计算各重现期下相应的精度误差。

通过最小二乘法计算得到各分布曲线的暴雨强度总分公式如下:

(1) P-Ⅲ分布:

总公式:
$$\mathbf{q} = \frac{\mathbf{1426.323} \times (\mathbf{1+0.490} \times \lg P)}{(t+8.346)^{0.621}}$$
 (单位: L/(S·hm²))

分公式:

$$q = \frac{167A}{(t+b)^n}$$
 (单位: L/(S·hm²))或 $i = \frac{A}{(t+b)^n}$ (单位: mm/min)

	W 1.0 1 111 // 1	W.1 — / W. Z. Z	200 3000	
P(a)	167A[L/(S·hm²)]	A(mm/min)	b	n
1	2702. 227	16. 181	17. 151	0. 799
2	2545. 915	15. 245	14. 401	0.721
3	2478. 447	14.841	12. 932	0.696
5	2402. 629	14. 387	11. 154	0.670
10	2069. 798	12.394	7. 963	0.616
20	1975. 109	11.827	6. 263	0.590
30	1924. 174	11.522	5. 447	0.576
40	1889. 104	11. 312	4. 905	0. 567
50	1862. 217	11. 151	4. 499	0.559
60	1840. 674	11.022	4. 174	0.554
70	1822. 471	10. 913	3. 903	0. 549
80	1806. 773	10.819	3.670	0. 545
90	1792. 912	10.736	3. 467	0.541
100	1780. 721	10.663	3. 286	0. 538

表 7.6 P-III分布-最小二乘法分公式参数表

(2) 耿贝尔分布:

总公式:
$$\mathbf{q} = \frac{1234.955 \times (1+0.633 \times \lg P)}{(t+7.493)^{0.608}}$$
 (单位: L/(S·hm²))

分公式:

$$\mathbf{q} = \frac{\mathbf{167}A}{(t+b)^n}$$
 (单位: L/(S·hm²))或 $\mathbf{i} = \frac{A}{(t+b)^n}$ (单位: mm/min)

表 7.7 耿贝尔分布-最小二乘法分公式参数表

	11-11-11-11-11-11-11-11-11-11-11-11-11-		-1 - 1 > >> = 1 -	
P(a)	167A[L/(S·hm²)]	A(mm/min)	b	n
1	2765. 687	16. 561	17. 372	0. 795
2	2482. 789	14.867	13. 595	0.722
3	2323. 471	13. 913	11. 703	0.686
5	2126. 578	12.734	9.470	0.645
10	2056. 605	12. 315	7.774	0.612
20	2118. 228	12.684	6. 794	0. 593
30	2154. 133	12.899	6. 401	0.585
40	2179. 517	13. 051	6. 151	0.579
50	2199. 223	13. 169	5. 968	0. 575
60	2215. 422	13. 266	5.822	0. 572
70	2228. 949	13. 347	5. 702	0.569
80	2240. 806	13. 418	5. 599	0. 567
90	2251. 16	13. 480	5. 510	0.565
100	2260. 512	13. 536	5. 431	0. 563

使用最小二乘法计算暴雨强度分公式和总公式各参数,不同分布

模型误差各不相同。

分公式误差:

表 7.8 最小二乘法暴雨强度分公式误差一览表

	重现期(a)	1	2	3	5	10	20	30	50	100	2-20a
P-III分布	$\sigma \; (mm/min)$	0.013	0.012	0.015	0.017	0.013	0.015	0.016	0.017	0.020	0.014
P-III分中	f (%)	1.64	1.57	1.56	1.54	1.08	1.04	1.09	1. 13	1. 29	1. 36
耿贝尔分	$\sigma \; (\text{mm/min})$	0.013	0.015	0.012	0.013	0.018	0.022	0.023	0.025	0.029	0.016
布	f (%)	1.72	1.36	0.90	1.04	1.40	1.48	1.51	1.60	1.74	1. 24

通过表 8.8 可以看出, P-III分布在重现期 2-20a, 平均绝对均方根误差为 0.014mm/min, 平均相对均方根误差为 1.36%, 均满足误差要求; 耿贝尔分布在重现期 2-20a, 平均绝对均方根误差为 0.016mm/min, 平均相对均方根误差为 1.24%。两种方法计算结果均比较理想。

总公式误差:

表 7.9 最小二乘法暴雨强度总公式误差一览表

	重现期(a)	1	2	3	5	10	20	30	50	100	2-20a
P-III分布	$\sigma \; (\text{mm/min})$	0. 180	0.072	0.054	0.018	0.013	0.026	0.039	0.061	0.096	0.037
P-11177 中	f (%)	27. 64	8. 10	5. 28	1.85	1.02	1.52	2.40	3.66	5. 69	3. 55
砂贝尔公去	$\sigma \; (\text{mm/min})$	0.092	0.043	0.022	0.015	0.017	0.021	0.025	0.030	0.039	0.024
耿贝尔分布	f (%)	14. 88	5. 73	2.82	1.63	1.41	1.54	1.66	1.85	2. 13	2.63

通过表 7.9 可以看出,各分布曲线的总公式在低重现期(1a)均有超出误差标准要求,这与频率公式的数理特性相关,但耿贝尔分布曲线的总公式在 3a 以后表现较好,满足误差要求。同时 P-III分布在重现期 2-20a,平均绝对均方差为 0.037mm/min,平均相对均方差为 3.55%,满足误差要求; 耿贝尔分布在重现期 2-20a 平均绝对均方差 为 0.024mm/min,平均相对均方差为 2.63%,两项指标都优于 P-III分布。

由于 P-III分布和耿贝尔分布拟合误差均满足指标,在通过最小二乘法计算暴雨强度总分公式误差对比分析后,P-III分布和耿贝尔分布的总分公式在重现期 2-20a 均满足误差要求,但是耿贝尔分布优于P-III分布,所以推荐优先选择耿贝尔分布,其次为 P-III分布。

7.2.2 高斯牛顿法

利用 P-III分布和耿贝尔分布曲线得到的 i-P-t 三联表数据,分别用高斯牛顿法计算暴雨强度总、分公式各参数,并计算各重现期下相应的精度误差。

通过高斯牛顿法计算得到各分布曲线的暴雨强度总分公式如下:

(1) P-Ⅲ分布:

总公式:
$$\mathbf{q} = \frac{1119.86 \times (1 + 0.584 \times \lg P)}{(t + 6.51)^{0.593}}$$
 (单位: L/(S·hm²))

分公式:

$$\mathbf{q} = \frac{\mathbf{167}A}{(t+b)^n}$$
 (单位: L/(S·hm²))或 $\mathbf{i} = \frac{A}{(t+b)^n}$ (单位: mm/min)

	表 7.10 P-III分布	一局斯牛顿法	分公式参数	表
P(a)	$167A[L/(S \cdot hm^2)]$	A(mm/min)	b	n
1	1119.860	6. 706	6.510	0. 593
2	1316. 831	7. 885	6. 510	0. 593
3	1432. 051	8. 575	6. 510	0. 593
5	1577. 212	9. 444	6. 510	0. 593
10	1774. 183	10.624	6. 510	0. 593
20	1971. 154	11.803	6.510	0. 593
30	2086. 374	12. 493	6. 510	0. 593
40	2168. 125	12. 983	6.510	0. 593
50	2231. 535	13. 362	6. 510	0. 593
60	2283. 345	13. 673	6.510	0. 593
70	2327. 150	13. 935	6. 510	0. 593
80	2365. 096	14. 162	6. 510	0. 593
90	2398. 566	14. 363	6. 510	0. 593

表 7.10 P-III分布-高斯牛顿法分公式参数表

(2) 耿贝尔分布:

2428.506

100

总公式:
$$\mathbf{q} = \frac{\mathbf{1113.63} \times (\mathbf{1} + \mathbf{0.699} \times \lg P)}{(t + 7.124)^{0.595}}$$
 (单位: L/(S·hm²))

14.542

6.510

0.593

分公式:

$$q = \frac{167A}{(t+b)^n}$$
 (单位: L/(S·hm²))或 $i = \frac{A}{(t+b)^n}$ (单位: mm/min)

+ 7 1	ч п.	H 4	1 +	÷₩,	レーエント	11 11	上台业上
衣 (.]	I 耳X		分州-	尚 斯 🖆	七则次	かか	式参数表

P(a)	167A[L/(S·hm²)]	A(mm/min)	b	n
1	1113. 630	6. 668	7. 124	0. 595
2	1348. 047	8.072	7. 124	0. 595
3	1485. 172	8.893	7. 124	0. 595
5	1657. 929	9. 928	7. 124	0. 595
10	1892. 346	11. 331	7. 124	0. 595
20	2126. 763	12. 735	7. 124	0. 595
30	2263. 888	13. 556	7. 124	0. 595
40	2361. 180	14. 139	7. 124	0. 595
50	2436. 645	14. 591	7. 124	0. 595
60	2498. 305	14. 960	7. 124	0. 595
70	2550. 437	15. 272	7. 124	0. 595
80	2595. 597	15. 542	7. 124	0. 595
90	2635. 430	15. 781	7. 124	0. 595
100	2671.062	15. 994	7. 124	0. 595

使用高斯牛顿法计算暴雨强度分公式和总公式各参数,不同分布模型误差各不相同,误差见表 7.12、7.13。

分公式误差:

表 7.12 高斯牛顿法暴雨强度分公式误差一览表

	重现期(a)	1	2	3	5	10	20	30	50	100	2-20a
P-III分布	σ (mm/min)	0. 089	0. 041	0.040	0. 057	0. 052	0.041	0. 039	0.050	0. 081	0. 046
	f (%)	19. 41	5. 12	3. 57	3. 34	3. 26	2.87	2. 78	3. 22	4. 32	3.63
耿贝尔分布	$\sigma \; (mm/min)$	0.065	0.036	0.034	0.034	0.032	0.033	0.037	0.046	0.061	0.034
	f (%)	14. 91	5. 61	3. 09	2. 27	2.03	2.06	2.18	2.40	2.76	3. 01

总公式误差:

表 7.13 高斯牛顿法暴雨强度总公式误差一览表

	重现期 (a)	1	2	3	5	10	20	30	50	100	2-20a
P-III分布	σ (mm/min)	0. 089	0.041	0.040	0. 057	0.052	0.041	0. 039	0.050	0. 081	0.046
	f (%)	19. 41	5. 12	3. 56	3. 35	3. 27	2.88	2.79	3. 22	4.31	3.64
耿贝尔分布	$\sigma \; (mm/min)$	0.065	0.036	0.034	0.034	0.032	0.033	0.037	0.046	0.061	0.034
	f (%)	14. 91	5. 60	3. 09	2. 27	2.04	2.07	2. 18	2.40	2.76	3.01

通过误差上面两表可以看出,两种分布曲线的总公式误差和分公式误差基本相同,各分布曲线的总分公式在低重现期(1a)及高重现期(100a)绝对均方差均超过 0.05mm/min。P-III分布在其他重现期(2a、5a、10a)出现不同程度超出误差标准,不满足误差要求;

同时对比两分布在重现期 2-20a 之间的绝对均方差和相对均方差, 耿 贝尔分布要优于 P-III分布。

7.3 年最大值法暴雨强度公式结论

针对广元市主城区 1980~2014 年共 35 年降水数据,运用 P-III 分布、指数分布和耿贝尔分布曲线拟合,得出拟合误差 P-III分布和耿贝尔分布满足要求,而指数分布拟合误差不满足要求;通过最小二乘法、高斯牛顿法分别对前两种分布曲线进行公式参数计算,并根据 i-P-t 三联表数据得到各公式误差,综合对比分析不同组合误差,得出"耿贝尔-最小二乘法、耿贝尔-高斯牛顿法、P-III-最小二乘法、P-III-高斯牛顿法"这四种组合误差均符合要求,其中"耿贝尔-最小二乘法"相对其他组合误差最小,因此该组合结果是年最大值法的最理想的暴雨强度公式。

年最大值法暴雨强度公式如下:

(1) 暴雨强度总公式:

$$\mathbf{q} = \frac{1234.955 \times (1+0.633 \times \lg P)}{(t+7.493)^{0.608}}$$
 单位: L/(S·hm²)

(平均绝对均方误差为 0.024mm/min, 相对均方误差为 2.63%)

(2) 单一重现期暴雨强度分公式:

$$\mathbf{q} = \frac{\mathbf{167}A}{(t+b)^n}$$
 (单位: L/(S·hm²))或 $\mathbf{i} = \frac{A}{(t+b)^n}$ (单位: mm/min)

表 7.14 单一重现期暴雨强度分公式参数表

P(a)	$167A[L/(S \cdot hm^2)]$	A(mm/min)	b	n
1	2765. 687	16. 561	17. 372	0. 795
2	2482. 789	14. 867	13. 595	0.722
3	2323. 471	13. 913	11. 703	0.686
5	2126. 578	12. 734	9.470	0.645
10	2056. 605	12. 315	7. 774	0.612
20	2118. 228	12. 684	6. 794	0. 593
30	2154. 133	12.899	6. 401	0.585
40	2179. 517	13. 051	6. 151	0.579
50	2199. 223	13. 169	5. 968	0.575
60	2215. 422	13. 266	5.822	0.572
70	2228. 949	13. 347	5. 702	0.569
80	2240. 806	13. 418	5. 599	0.567
90	2251. 16	13. 48	5. 510	0.565
100	2260. 512	13. 536	5. 431	0. 563

(3) 任意重现期暴雨强度计算公式表:

表 7.15 任意重现期暴雨强度计算公式表

		•	, ,	
重	现期	区间	参数	公式
			n	0.753-0.071Ln(P - 0.444)
]	1-10	II	b	15. 501-3. 940Ln (P - 0. 378)
			A	16. 285-2. 239Ln (P - 0. 116)
			n	0. 636-0. 016Ln (P - 5. 632)
10	0-100	III	b	8. 601-0. 699Ln (P - 6. 737)
			A	11. 105+0. 528Ln (P - 0. 107)

8. 年最大值法和南充暴雨强度公式对比

广元市由于从未编制过暴雨强度公式,现行使用的暴雨强度公式 是参照周边南充等地的公式,现将年最大值法公式结果与广元现行公 式(南充旧版)进行初步比较。

现行公式 (南充旧版):

$$\mathbf{q} = \frac{8016 \times (1 + 0.64 \lg P)}{(t + 39.3 P^{0.167})}$$
 (单位: L/(S·hm²))

表 9.1 广元现行总公式(南充旧版)计算结果 (单位: L/(S·hm²))

P∖t	5	10	15	20	30	45	60	90	120	150	180
1	180. 9481	162. 5963	147. 6243	135. 1771	115. 671	95. 08897	80. 72508	61. 99536	50. 32015	42. 34548	36. 55267
2	193. 5331	175. 7449	160. 9513	148. 4549	128. 501	106. 9402	91. 57511	71. 1341	58. 15335	49. 17902	42.60426
3	198. 6162	181. 4001	166. 9305	154. 5987	134. 6976	112.8979	97. 17153	75. 99869	62.40186	52. 93188	45. 95747
5	202. 9407	186. 6189	172. 7271	160.7603	141. 1956	119. 3992	103. 4323	81.60637	67. 38666	57. 3871	49.97175
10	205. 6104	190.6976	177.8018	166. 5396	147.8142	126. 482	110. 5306	88. 26676	73.46829	62.91945	55. 01955
20	205. 22	191.8218	180.0658	169.6675	152. 1008	131.6543	116.0536	93.8189	78. 73423	67.82844	59. 57629
50	201. 0183	189. 6274	179. 4583	170. 3243	154. 5881	135. 7721	121. 0395	99. 45577	84. 40472	73. 31036	64.79372
100	195. 7051	185. 7595	176. 7759	168. 6211	154. 378	137. 0176	123. 167	102. 4536	87.70416	76. 667	68. 09727

表 9.2 广元新编总公式计算结果 (单位: L/(S·hm²))

				_ ,, , ,, ,				, ,	, ,		
P∖t	5	10	15	20	30	45	60	90	120	150	180
1	265. 9976	216. 7652	186. 0400	164. 6661	136. 3608	111. 1295	95. 3810	76. 2703	64. 7911	56. 9792	51. 2479
2	316. 6840	258. 0703	221. 4903	196. 0435	162. 3446	132. 3055	113. 5560	90.8037	77. 1372	67. 8367	61.0133
3	346. 3336	282. 2322	242. 2274	214. 3981	177. 5441	144. 6926	124. 1877	99. 3052	84. 3592	74. 1879	66. 7257
5	383. 6877	312. 6726	268. 3530	237. 5222	196. 6933	160. 2986	137. 5821	110.0159	93.4578	82. 1895	73.9225
10	434. 3741	353. 9776	303. 8033	268. 8997	222.6771	181. 4745	155. 7572	124. 5494	105. 8039	93. 0470	83. 6878
20	485. 0605	395. 2827	339. 2536	300. 2771	248.6609	202.6505	173. 9322	139. 0828	118. 1500	103. 9045	93. 4532
50	552. 0642	449. 8850	386. 1163	341.7558	283. 0097	230. 6436	197. 9583	158. 2950	134. 4706	118.2574	106. 3624
100	602.7506	491. 1900	421.5666	373. 1333	308. 9935	251.8195	216. 1333	172.8284	146. 8167	129. 1148	116. 1278

表 9.3 (广元新编总公式-广元现行总公式(南充旧版))/广元新编总公式(%)

	. ,	17 / 311/1	719 10 11	1 / / 2 /	17 7	- 4 1114 /	U 11 / 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1	, , , <u>, , , , , , , , , , , , , , , , </u>	71 /19 1 7	, , , , , ,	
P∖t	5	10	15	20	30	45	60	90	120	150	180
1	32.0%	25.0%	20.6%	17.9%	15. 2%	14.4%	15.4%	18.7%	22.3%	25. 7%	28. 7%
2	38. 5%	31.6%	27.0%	23.9%	20.6%	18.9%	19.1%	21.5%	24.5%	27.4%	30.1%
3	42.1%	35. 2%	30.6%	27.4%	23.7%	21.6%	21.4%	23.2%	25.8%	28.5%	31.0%
5	46.4%	39.6%	34.9%	31.6%	27.6%	24.9%	24.3%	25.4%	27.6%	29.9%	32.2%
10	51.8%	45.2%	40.5%	37.1%	32.7%	29.5%	28.3%	28.6%	30.1%	32.0%	33.9%
20	56.6%	50.3%	45.7%	42.3%	37.7%	34.0%	32.3%	31.8%	32.7%	34.2%	35.8%
50	62.4%	56. 5%	52.1%	48.7%	44.0%	39.8%	37.6%	36. 1%	36.4%	37.3%	38.4%
100	66.2%	60.8%	56.6%	53.3%	48.5%	44.1%	41.6%	39.5%	39. 2%	39. 7%	40.6%

上表为广元年最大值法总公式计算结果减去南充公式计算结果,再除以广元公式的结果。从以上数据可以看出,新推导的公式所计算出来的雨强比相应的原公式所求的雨强大。

9. 结论及建议

9.1 结论

本项目采用广元国家基本气象站(站号: 57206) 1980-2014 年共 35 年自记雨量记录资料,严格按照气象部门《地面气候资料 30 年整编常规项目及其统计方法》和已业务化运行的"降水自记纸彩色扫描数字化处理系统"对原始数据进行信息化处理和校正,得到准确可靠的降水样本。根据《城市暴雨强度公式编制和设计暴雨雨型确定技术导则》、《室外排水设计规范》(GB50014-2006, 2014版)等规定的方法对暴雨强度公式进行推求及按标准筛选,得到"年最大值法-耿贝尔分布-最小二乘法"这一结果为广元主城区的暴雨强度公式。

广元主城区暴雨强度公式如下:

(1) 暴雨强度总公式:

$$\mathbf{q} = \frac{1234.955 \times (1 + 0.633 \times \lg P)}{(t + 7.493)^{0.608}} \quad (单位: L/(S \cdot hm^2))$$

(平均绝对均方误差为 0.024mm/min, 相对均方误差为 2.63%)

(2) 单一重现期暴雨强度分公式:

$$\mathbf{q} = \frac{167A}{(t+b)^n}$$
 (单位: L/(S·hm²))或 $\mathbf{i} = \frac{A}{(t+b)^n}$ (单位: mm/min)

	表 7.14 单一重现	期暴雨强度分公	式参数表	
P(a)	$167 \mathrm{A} \left(\mathrm{L/s/hm^2} \right)$	A(mm/min)	b	n
1	2765. 687	16. 561	17. 372	0. 795
2	2482. 789	14.867	13. 595	0.722
3	2323. 471	13. 913	11. 703	0.686
5	2126. 578	12.734	9.470	0.645
10	2056. 605	12. 315	7.774	0.612
20	2118. 228	12.684	6. 794	0. 593
30	2154. 133	12.899	6. 401	0.585
40	2179. 517	13. 051	6. 151	0.579
50	2199. 223	13. 169	5. 968	0.575
60	2215. 422	13. 266	5.822	0.572
70	2228. 949	13. 347	5. 702	0.569
80	2240. 806	13. 418	5. 599	0.567
90	2251. 16	13. 48	5. 510	0.565
100	2260 512	13 536	5 /31	0.563

表 7.14 单一重现期暴雨强度分公式参数表

(3) 任意重现期暴雨强度计算公式表:

表 7.15 任意重现期暴雨强度计算公式表

重现期	区间	参数	公式
		n	0. 753-0. 071Ln (P - 0. 444)
1-10	II	b	15. 501-3. 940Ln (P - 0. 378)
		A	16. 285-2. 239Ln (P - 0. 116)
		n	0. 636-0. 016Ln (P - 5. 632)
10-100	III	b	8. 601-0. 699Ln (P - 6. 737)
		A	11. 105+0. 528Ln (P - 0. 107)

暴雨强度的总公式满足《室外排水设计规范》(GB50014-2006, 2014版)精度要求,多数情况下单一重现期分公式比总公式精度高, 建议正常情况下采用包含重现期的统一公式,更具有指导意义,对于 个别情况如城市大型或重要的雨水泵站、排水泵站等,可考虑采用单 一重现期公式。

9.2 建议

9.2.1 暴雨强度公式适用范围

广元市地处盆周山区, 地形起伏较大, 气候较为复杂, 各地拥有不同的降水类型, 并且短历时降水具有明显的局地特征, 广元市各县区的暴雨强度有明显差异, 因此参考广元市的地形, 考虑到山体是气候特征的分界线, 建议目前在广元主城区采用此暴雨强度公式, 其他县区可以参考使用。

9.2.2 修订建议

在全球气候变化、极端气候事件频发的大背景下,随着广元市主 城区城市化进程的不断加速,城市下垫面也发生着的巨大变化,城市 热岛效应、城市对大气环境的影响等都是极端降水事件的诱发因素。 另外,由于气候变化具有显著的阶段性特征,降水资料本身存在明显 的年代际变化,随着广元主城区城市化建设进程加快,建议每隔 10 年对广元主城区暴雨公式进行修编。

参考文献

- 1. 室外设计排水规范(GB50014-2006)(2011 年版),中国计划出版社,2012.
- 2. 室外设计排水规范(GB50014-2006)(2014年版),中国计划出版社,2014.
- 3. 住房城乡建设部 中国气象局《城市暴雨强度公式编制和设计暴雨雨型确定技术导则》(2014年4月)
- 4. 广东省气候中心《城市排水工程设计—暴雨强度公式编制技术指南》2013 年 5 月
- 5. 陈正洪,王海军,张小丽等.水文学中雨强公式参数求解的一种最优化方法.应用气象学报,2007,18(2)
- 6. 陈正洪,王海军,张小丽.深圳市新一代暴雨强度公式的研制.自然灾害学报,2007,16(3)
 - 7. 张子贤, 用高斯-牛顿法确定暴雨公式参数. 河海大学学报, 1995, 23(5)
- 8. 许沛华,陈正洪,李磊等.深圳分钟降水数据预处理系统设计与应用. 暴雨灾害,2012,31(1)
- 9. 周玉文, 翁窈瑶, 张晓昕等. 应用年最大值法推求城市暴雨强度公式的研究. 给排水, 2011, 37 (10)
- 10. 邓德培. 城市暴雨两种选样方法的概率关系与应用评述. 给排水,2006,32(6)
- 11. 植石群,宋丽莉,罗金铃等.气象暴雨强度计算系统及其应用. 2000, 26(6)
- 12. 翁窈瑶,周玉文.城市暴雨强度公式推求方法研究 北京工业大学工学硕士学位论文. 2012, 5